Tren Penelitian Industry 4.0 di Sektor Manufaktur: Analisis Bibliometrik
DOI:
https://doi.org/10.31004/jutin.v9i1.55084Keywords:
Industry 4.0, Manufacturing, Bibliometric Analysis, Scopus, VOSviewerAbstract
This study aims to analyze research trends and developments related to Industry 4.0 in the manufacturing sector using a bibliometric approach. Data were collected from the Scopus database covering the last five years (2022–2026), resulting in 1,660 articles for analysis. The analysis was conducted through descriptive analysis and bibliometric mapping using VOSviewer to identify keyword relationships, research clusters, and thematic trends. The results indicate that Industry 4.0 is the central theme, strongly connected with internet of things, decision making, and production process. Furthermore, emerging topics such as digital technologies, sustainability, and supply chains represent recent research focuses. These findings demonstrate that Industry 4.0 research in manufacturing is multidisciplinary and increasingly oriented toward sustainability and integrated industrial systems.References
Abduljaleel, J., & AlDurgam, M. M. (2025). Structural Properties and a Revised Value Iteration Algorithm for Dynamic Capacity Expansion and Reduction. Mathematics, 13(23). https://doi.org/10.3390/math13233865
Butler, Q., Ziada, Y., Stephenson, D., & Gadsden, S. A. (2022). Condition Monitoring of Machine Tool Feed Drives: A Review. Journal of Manufacturing Science and Engineering, 144(10). https://doi.org/10.1115/1.4054516
Dallasega, P., Woschank, M., Sarkis, J., & Tippayawong, K. Y. (2022). Logistics 4.0 measurement model: empirical validation based on an international survey. Industrial Management and Data Systems, 122(5), 1384–1409. https://doi.org/10.1108/IMDS-11-2021-0694
Dewberry, N. K., AlHmoud, I., Benton, K., Suarez, D., Chen, Y.-P., Karkaria, V., Tsai, Y.-K., Brock, M., Alazzawi, N., Chowdhury, S., Chen, W., Cao, J., & Gokaraju, B. (2025). A real-time VR-enabled digital twin framework for multi-user interaction in Industry 4.0. Manufacturing Letters, 44, 1486–1497. https://doi.org/10.1016/j.mfglet.2025.06.168
Fan, H., Chow, E., Lu, T., Fuh, J. Y. H., Lu, W. F., & Li, B. (2026). A unified framework for large language model-guided reinforcement learning in digital twin industrial environments. Robotics and Computer-Integrated Manufacturing, 99. https://doi.org/10.1016/j.rcim.2025.103215
Goh, S. Y., Mishra, A., Govindarasu, M., Ganapathysubramanian, B., & Krishnamurthy, A. (2025). Assessing the cybersecurity of connected 3D printers using large language models (LLMs). Manufacturing Letters, 44, 1187–1197. https://doi.org/10.1016/j.mfglet.2025.06.138
Hosseinzadeh, A., Chen, F., Shahin, M., & Bouzary, H. (2023). A predictive maintenance approach in manufacturing systems via AI-based early failure detection. Manufacturing Letters, 35, 1179–1186. https://doi.org/10.1016/j.mfglet.2023.08.125
Kang, M., & Sun, H. (2025). EthicalFab: Toward ethical fabrication process through privacy-preserving illegal product detection. Manufacturing Letters, 44, 1425–1431. https://doi.org/10.1016/j.mfglet.2025.06.162
Lin, Y., Lin, W., & Lin, Y. (2025). Real-Time Multimodal Defect Detection and MES Feedback on Edge Devices via Bayesian Fusion and Causal Adaptation. IEEE Access, 13, 162226–162237. https://doi.org/10.1109/ACCESS.2025.3610341
Michael, S. A., Atieh, A. M., Nkwocha, E., & Rawashdeh, N. A. (2025). Cyber-physical framework for smart paint manufacturing: Hybrid integration of PLC and recipe management simulation. Advances in Mechanical Engineering, 17(12). https://doi.org/10.1177/16878132251406501
Mozaffar, F., Smith, L., & Morkos, B. (2025). Tunes of trust: A framework for auditory nudges in human-ai manufacturing collaboration. Manufacturing Letters, 44, 195–204. https://doi.org/10.1016/j.mfglet.2025.06.024
Osho, J., Hyre, A., Pantelidakis, M., Ledford, A., Harris, G., Liu, J., & Mykoniatis, K. (2022). Four Rs Framework for the development of a digital twin: The implementation of Representation with a FDM manufacturing machine. Journal of Manufacturing Systems, 63, 370–380. https://doi.org/10.1016/j.jmsy.2022.04.014
Ponce-Cruz, P., Maldonado-Romo, J., Anthony, B. W., Bradley, R., & Montesinos, L. (2025). A Symbiotic Digital Environment Framework for Industry 4.0 and 5.0: Enhancing Lifecycle Circularity. Eng, 6(12). https://doi.org/10.3390/eng6120355
Sharotry, A., Jiménez, J. A., Méndez Mediavilla, F. A. M., Wierschem, D., Koldenhoven, R. M., & Valles, D. (2022). Manufacturing Operator Ergonomics: A Conceptual Digital Twin Approach to Detect Biomechanical Fatigue. IEEE Access, 10, 12774–12791. https://doi.org/10.1109/ACCESS.2022.3145984
Siregar, Z. H., Bandio, F. R., & Nasution, R. H. (2022). Analisis kapasitas produksi menggunakan metode rought cut capacity planning (rccp). Jurnal Vorteks, 03. https://doi.org/10.54123/vorteks.v3i2.213
Siregar, Z. H., Mawardi, Puspita, R., Siregar, R., Fazri, M., Saktisahdan, T. J., Rigitta, P., Refiza, & Zurairah, M. (2023). SOSIALISASI PENGADAAN RUMAH PRODUKSI PENGOLAHAN IKAN CUMI DI KEPULAUAN RIAU KABUPATEN KEPULAUAN ANAMBAS MELALUI KEGIATAN PEJUANG MUDA 2021. Jurnal Deputi, 3(1), 164–168. https://doi.org/10.54123/deputi.v3i1.240
Siregar, Z. H., Syam, A. A., & Harahap, U. N. (2022). Perencanaan kapasitas dan waktu produksi menggunakan metode capacity requirement planning (crp) pada industri tahu tempe. Jurnal Vorteks, 03(01), 174–181. https://doi.org/10.54123/vorteks.v3i1.152
Smith, N. D., Hovanski, Y., Tenny, J., & Bergner, S. (2024). Digital Performance Management: An Evaluation of Manufacturing Performance Management and Measurement Strategies in an Industry 4.0 Context. Machines, 12(8). https://doi.org/10.3390/machines12080555
Sundaram, S., & Zeid, A. (2023). Artificial Intelligence-Based Smart Quality Inspection for Manufacturing. Micromachines, 14(3). https://doi.org/10.3390/mi14030570
van der Pas, M. C. A., Akcay, A. E., Dijkman, R. M., & Adan, I. J. B. F. (2025). Combining case-based reasoning and process mining for root cause analysis in complex manufacturing environments. Manufacturing Letters, 46, 156–160. https://doi.org/10.1016/j.mfglet.2025.11.010
Vergara, M. Á., Villalobos, M. B., Castro-Rangel, P., Alvarez, J. C., & Lepore, R. (2025). Productivity Improvement Model in the Garment Industry: Application of Standardized Work and Poka Yoke with Artificial Vision. Textiles (Switzerland), 5(4). https://doi.org/10.3390/textiles5040064
Vora, H., Davoudi Kakhki, F., & Moghadam, A. (2026). Evaluating impact of occupational exoskeletons on physical fatigue using wearable sensors and deep learning. International Journal of Advanced Manufacturing Technology. https://doi.org/10.1007/s00170-025-17213-z
Yaqot, M., Franzoi, R. E., Islam, A., & Menezes, B. C. (2022). Cyber-Physical System Demonstration of an Automated Shuttle-Conveyor-Belt Operation for Inventory Control of Multiple Stockpiles: A Proof of Concept. IEEE Access, 10, 127636–127653. https://doi.org/10.1109/ACCESS.2022.3226942
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2026 Ananda Fadlan, M Dhiky Ramadhan, Mhd Dzaki Syauqi

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

