Tren Penelitian Industry 4.0 di Sektor Manufaktur: Analisis Bibliometrik

Authors

  • Ananda Fadlan Universitas Al-Azhar, Medan, Indonesia
  • M Dhiky Ramadhan Universitas Al-Azhar, Medan, Indonesia
  • Mhd Dzaki Syauqi Universitas Al-Azhar, Medan, Indonesia

DOI:

https://doi.org/10.31004/jutin.v9i1.55084

Keywords:

Industry 4.0, Manufacturing, Bibliometric Analysis, Scopus, VOSviewer

Abstract

This study aims to analyze research trends and developments related to Industry 4.0 in the manufacturing sector using a bibliometric approach. Data were collected from the Scopus database covering the last five years (2022–2026), resulting in 1,660 articles for analysis. The analysis was conducted through descriptive analysis and bibliometric mapping using VOSviewer to identify keyword relationships, research clusters, and thematic trends. The results indicate that Industry 4.0 is the central theme, strongly connected with internet of things, decision making, and production process. Furthermore, emerging topics such as digital technologies, sustainability, and supply chains represent recent research focuses. These findings demonstrate that Industry 4.0 research in manufacturing is multidisciplinary and increasingly oriented toward sustainability and integrated industrial systems.

References

Abduljaleel, J., & AlDurgam, M. M. (2025). Structural Properties and a Revised Value Iteration Algorithm for Dynamic Capacity Expansion and Reduction. Mathematics, 13(23). https://doi.org/10.3390/math13233865

Butler, Q., Ziada, Y., Stephenson, D., & Gadsden, S. A. (2022). Condition Monitoring of Machine Tool Feed Drives: A Review. Journal of Manufacturing Science and Engineering, 144(10). https://doi.org/10.1115/1.4054516

Dallasega, P., Woschank, M., Sarkis, J., & Tippayawong, K. Y. (2022). Logistics 4.0 measurement model: empirical validation based on an international survey. Industrial Management and Data Systems, 122(5), 1384–1409. https://doi.org/10.1108/IMDS-11-2021-0694

Dewberry, N. K., AlHmoud, I., Benton, K., Suarez, D., Chen, Y.-P., Karkaria, V., Tsai, Y.-K., Brock, M., Alazzawi, N., Chowdhury, S., Chen, W., Cao, J., & Gokaraju, B. (2025). A real-time VR-enabled digital twin framework for multi-user interaction in Industry 4.0. Manufacturing Letters, 44, 1486–1497. https://doi.org/10.1016/j.mfglet.2025.06.168

Fan, H., Chow, E., Lu, T., Fuh, J. Y. H., Lu, W. F., & Li, B. (2026). A unified framework for large language model-guided reinforcement learning in digital twin industrial environments. Robotics and Computer-Integrated Manufacturing, 99. https://doi.org/10.1016/j.rcim.2025.103215

Goh, S. Y., Mishra, A., Govindarasu, M., Ganapathysubramanian, B., & Krishnamurthy, A. (2025). Assessing the cybersecurity of connected 3D printers using large language models (LLMs). Manufacturing Letters, 44, 1187–1197. https://doi.org/10.1016/j.mfglet.2025.06.138

Hosseinzadeh, A., Chen, F., Shahin, M., & Bouzary, H. (2023). A predictive maintenance approach in manufacturing systems via AI-based early failure detection. Manufacturing Letters, 35, 1179–1186. https://doi.org/10.1016/j.mfglet.2023.08.125

Kang, M., & Sun, H. (2025). EthicalFab: Toward ethical fabrication process through privacy-preserving illegal product detection. Manufacturing Letters, 44, 1425–1431. https://doi.org/10.1016/j.mfglet.2025.06.162

Lin, Y., Lin, W., & Lin, Y. (2025). Real-Time Multimodal Defect Detection and MES Feedback on Edge Devices via Bayesian Fusion and Causal Adaptation. IEEE Access, 13, 162226–162237. https://doi.org/10.1109/ACCESS.2025.3610341

Michael, S. A., Atieh, A. M., Nkwocha, E., & Rawashdeh, N. A. (2025). Cyber-physical framework for smart paint manufacturing: Hybrid integration of PLC and recipe management simulation. Advances in Mechanical Engineering, 17(12). https://doi.org/10.1177/16878132251406501

Mozaffar, F., Smith, L., & Morkos, B. (2025). Tunes of trust: A framework for auditory nudges in human-ai manufacturing collaboration. Manufacturing Letters, 44, 195–204. https://doi.org/10.1016/j.mfglet.2025.06.024

Osho, J., Hyre, A., Pantelidakis, M., Ledford, A., Harris, G., Liu, J., & Mykoniatis, K. (2022). Four Rs Framework for the development of a digital twin: The implementation of Representation with a FDM manufacturing machine. Journal of Manufacturing Systems, 63, 370–380. https://doi.org/10.1016/j.jmsy.2022.04.014

Ponce-Cruz, P., Maldonado-Romo, J., Anthony, B. W., Bradley, R., & Montesinos, L. (2025). A Symbiotic Digital Environment Framework for Industry 4.0 and 5.0: Enhancing Lifecycle Circularity. Eng, 6(12). https://doi.org/10.3390/eng6120355

Sharotry, A., Jiménez, J. A., Méndez Mediavilla, F. A. M., Wierschem, D., Koldenhoven, R. M., & Valles, D. (2022). Manufacturing Operator Ergonomics: A Conceptual Digital Twin Approach to Detect Biomechanical Fatigue. IEEE Access, 10, 12774–12791. https://doi.org/10.1109/ACCESS.2022.3145984

Siregar, Z. H., Bandio, F. R., & Nasution, R. H. (2022). Analisis kapasitas produksi menggunakan metode rought cut capacity planning (rccp). Jurnal Vorteks, 03. https://doi.org/10.54123/vorteks.v3i2.213

Siregar, Z. H., Mawardi, Puspita, R., Siregar, R., Fazri, M., Saktisahdan, T. J., Rigitta, P., Refiza, & Zurairah, M. (2023). SOSIALISASI PENGADAAN RUMAH PRODUKSI PENGOLAHAN IKAN CUMI DI KEPULAUAN RIAU KABUPATEN KEPULAUAN ANAMBAS MELALUI KEGIATAN PEJUANG MUDA 2021. Jurnal Deputi, 3(1), 164–168. https://doi.org/10.54123/deputi.v3i1.240

Siregar, Z. H., Syam, A. A., & Harahap, U. N. (2022). Perencanaan kapasitas dan waktu produksi menggunakan metode capacity requirement planning (crp) pada industri tahu tempe. Jurnal Vorteks, 03(01), 174–181. https://doi.org/10.54123/vorteks.v3i1.152

Smith, N. D., Hovanski, Y., Tenny, J., & Bergner, S. (2024). Digital Performance Management: An Evaluation of Manufacturing Performance Management and Measurement Strategies in an Industry 4.0 Context. Machines, 12(8). https://doi.org/10.3390/machines12080555

Sundaram, S., & Zeid, A. (2023). Artificial Intelligence-Based Smart Quality Inspection for Manufacturing. Micromachines, 14(3). https://doi.org/10.3390/mi14030570

van der Pas, M. C. A., Akcay, A. E., Dijkman, R. M., & Adan, I. J. B. F. (2025). Combining case-based reasoning and process mining for root cause analysis in complex manufacturing environments. Manufacturing Letters, 46, 156–160. https://doi.org/10.1016/j.mfglet.2025.11.010

Vergara, M. Á., Villalobos, M. B., Castro-Rangel, P., Alvarez, J. C., & Lepore, R. (2025). Productivity Improvement Model in the Garment Industry: Application of Standardized Work and Poka Yoke with Artificial Vision. Textiles (Switzerland), 5(4). https://doi.org/10.3390/textiles5040064

Vora, H., Davoudi Kakhki, F., & Moghadam, A. (2026). Evaluating impact of occupational exoskeletons on physical fatigue using wearable sensors and deep learning. International Journal of Advanced Manufacturing Technology. https://doi.org/10.1007/s00170-025-17213-z

Yaqot, M., Franzoi, R. E., Islam, A., & Menezes, B. C. (2022). Cyber-Physical System Demonstration of an Automated Shuttle-Conveyor-Belt Operation for Inventory Control of Multiple Stockpiles: A Proof of Concept. IEEE Access, 10, 127636–127653. https://doi.org/10.1109/ACCESS.2022.3226942

Downloads

Published

2026-01-20

How to Cite

Fadlan, A., Ramadhan, M. D., & Syauqi, M. D. (2026). Tren Penelitian Industry 4.0 di Sektor Manufaktur: Analisis Bibliometrik. Jurnal Teknik Industri Terintegrasi (JUTIN), 9(1), 1061–1067. https://doi.org/10.31004/jutin.v9i1.55084

Issue

Section

Articles of Research

Similar Articles

<< < 12 13 14 15 16 17 18 19 20 21 > >> 

You may also start an advanced similarity search for this article.