Strategi Kompetitif Berbasis Data: Kajian Literatur Peran Informasi dan Big Data Dalam Menciptakan Diferensiasi dan Inovasi Model Bisnis
DOI:
https://doi.org/10.31004/jutin.v9i1.54547Keywords:
Big Data Analysis, Information Management, Business Differentiation, Business Model Innovation, Systematic Literature ReviewAbstract
The rapid development of the digital economy has shifted the source of competitive advantage from physical assets to the ability of organizations to process data into valuable information and insights. This is crucial because many organizations possess abundant data but are unable to utilize it as a source of strategic value, differentiation, and business model innovation. This study examines the role of Big Data Analytics (BDA) in facilitating the transformation of data into insights that support organizational value creation. The method used is a Systematic Literature Review (SLR) based on PRISMA guidelines for 31 articles from 2020–2025. The results of the study indicate that the value of Big Data does not come from the data itself, but from a structured processing process supported by organizational capabilities such as absorptive capacity, a data-driven culture, knowledge sharing, and strategic agility. These capabilities enable the effective utilization of insights to improve decision quality, market understanding, services, and sustainable business innovation.References
Ardito, L., Cerchione, R., Mazzola, E., & Ragus, E. (2022). Industry 4.0 transition: a systematic literature review combining the absorptive capacity theory and the data–information–knowledge hierarchy. Journal of Knowledge Management, 26(9), 2222-2254. doi:https://doi.org/10.1108/JKM-04-2021-0325
Andrés, M. R., & Abril, C. (2024). Sustainability oriented innovation and organizational values: a cluster analysis. The Journal of Technology Transfer, 49, 18. doi:https://doi.org/10.1007/s10961-022-09979-1
Baottong, M. H., Sari , F. I., Sasmita, H., Baharuddin, C., & Salam, K. N. (2025). Leveraging Big Data for Competitive Advantage: A Review in Business Analytics. Advances in Management & Financial Reporting, 3(3). doi:https://doi.org/10.60079/amfr.v3i3.604
Deng, J., Huang, S., Wang, L., Deng, W., & Yang, T. (2022). Conceptual Framework for Smart Health: A Multi-Dimensional Model Using IPO Logic to Link Drivers and Outcomes. 19(24), 16742. doi:https://doi.org/10.3390/ijerph192416742
Duan, C. (2024). Thematic evolution, emerging trends for sharing economy business model research, and future research directions in the post-COVID-19 era. R&D Management, 54(5), 1233. doi:https://doi.org/10.1111/radm.12636
Faroukhi, A. Z., Alaoui, E. I., Gahi, Y., & Amine, A. (2020). An Adaptable Big Data Value Chain Framework for End-to-End Big Data Monetization. Big Data and Cognitive Computing, 4(4), 34. doi:https://doi.org/10.3390/bdcc4040034
Fischer, H., Wiener, M., Strahringer, S., Kotlarsky, J., & Bley, K. (2023). Data-Driven Organizations: Review, Conceptual Framework, and Empirical Illustration. Australasian Journal of Information Systems, 27. doi:https://doi.org/10.3127/ajis.v27i0.4425
Gama, F., & Magistretti, S. (2025). Artificial intelligence in innovation management:A review of innovation capabilities and a taxonomyof AI applications. Journal of Product Innovation Management, 42(1), 283. doi:https://doi.org/10.1111/jpim.12698
Gamoura, S. C., Derrouiche, R., Damand, D., & Barth, M. (2020). Insights from big Data Analytics in supply chain management: an all-inclusive literature review using the SCOR model. Production Planning & Control, 31(5). doi:https://doi.org/10.1080/09537287.2019.1639839
Ghadge, A., Bourlakis, M., Kamble, S., & Seuring, S. (2023). Blockchain implementation in pharmaceutical supply chains: A review and conceptual framework. INTERNATIONAL JOURNAL OF PRODUCTION RESEARCH, 61(19), 6651. doi:https://doi.org/10.1080/00207543.2022.2125595
Horani, O. M., Khatibi, A., AL-S, A. R., Tham, J., & Al-Adwan, A. S. (2023). Determining the Factors Influencing Business Analytics Adoption at Organizational Level: A Systematic Literature Review. Big Data & Cognitive Computing, 7(3), 125. doi:https://doi.org/10.3390/bdcc7030125
Khan, C. B., Khan, F., Iftikhar, M., & Qureshi, M. I. (2025). EFFECT OF FIRM’S BIG DATA ANALYTICS CAPABILITY ON COMPETITIVE ADVANTAGE: MEDIATING EFFECT OF BUSINESS MODEL INNOVATION AND MODERATING EFFECT OF ENVIRONMENTAL UNCERTAINTY. Pakistan: RASTA.
Khanra, S., Dhir , A., & Mäntymäki, M. (2020). Big data analytics and enterprises: a bibliometric synthesis of the literature. Enterprise Information Systems , 14(06), 737-768. doi:https://doi.org/10.1080/17517575.2020.1734241
Korherr, P., & Kanbach, D. (2021). Human related capabilities in big data analytics:. Review of Managerial Science, 17, 1970. doi:10.1007/s11846-021-00506-4
Lee, I., & Mangalaraj, G. (2022). Big Data Analytics in Supply Chain Management: A Systematic Literature Review and Research Directions. Big Data & Cognitive Computing, 6(1), 17. doi:https://doi.org/10.3390/bdcc6010017
Liu, Z., Deng, L., Wang, F., Xiong, W., Wu, T., & Demian, P. (2025). Building Information Modeling and Big Data in Sustainable Building Management: Research Developments and Thematic Trends via Data Visualization Analysis. Systems, 13(7), 595. doi:https://doi.org/10.3390/systems13070595
Ma, Z. (2023). Energy metaverse: the conceptual framework with a review of the state-of-the-art methods and technologies. Ma Energy Informatics, 6(42). doi:https://doi.org/10.1186/s42162
Mageto, J. (2021). Big Data Analytics in Sustainable Supply Chain Management: A Focus on Manufacturing Supply Chains. Sustainability, 13(13), 7101. doi:https://doi.org/10.3390/su13137101
Mahrool, F. (2020). Research Methodology. A Guide for a Literature Review: A Short Description. GRIN Verlag Munich.
Margaritis , I., Madas, M., & Vlachopoulou , M. (2022). Big Data Applications in Food Supply Chain Management: A Conceptual Framework. Sustainability , 14(7). doi:https://doi.org/10.3390/su14074035
Mathrani, S., & Lai, X. (2021). Big Data Analytic Framework for Organizational Leverage. Applied Sciences, 11(5), 2340. doi:https://doi.org/10.3390/app11052340
McAfee, A., & Brynjolfsson, E. (2012). Big Data: The Management Revolution (Vol. 90). Harvard Business Review. Retrieved from https://url-shortener.me/7EF7
Mikalef , P., Krogstie, J., Pappas, I. O., & Pavlou, P. (2020). Exploring the relationship between big data analytics capability and competitive performance: The mediating roles of dynamic and operational capabilities. Information & Management, 57(2). doi:https://doi.org/10.1016/j.im.2019.05.004
Mohamed, A., Najafabadi, M. K., Wah, Y. B., Zaman , E. A., & Maskat , R. (2020). The state of the art and taxonomy of big data analytics: view from new big data framework. Artificial Intelligence Review, 53, 989-1037. Retrieved from https://link.springer.com/article/10.1007/s10462-019-09685-9
MOURTZIS, D. (2021). TOWARDS THE 5th INDUSTRIAL REVOLUTION: A LITERATURE REVIEW. Journal of Machine Engineering, 21, 5-39. Retrieved from https://bibliotekanauki.pl/articles/1833773.pdf
Nugraha, F. P., Ritchi, H., & Adrianto, Z. (2023). Interaksi Big Data, Kualitas Data, dan Kinerja Keputusan: Studi Kasus BPJS Kesehatan. JPAK : Jurnal Pendidikan Akuntansi dan Keuangan, 11(2). doi:https://ejournal.upi.edu/index.php/JPAK/article/view/60659
Raff, S., Wentzel, D., & Obwegeser, N. (2020). Smart Products: Conceptual Review, Synthesis, and Research Directions. J PROD INNOV MANAG, 37(5), 404. doi:https://doi.org/10.1111/jpim.12544
Ragazou , K., Passas, I., Garefalakis, A., & Dimou, I. (2022). Investigating the Research Trends on Strategic Ambidexterity, Agility, and Open Innovation in SMEs: Perceptions from Bibliometric Analysis. Journal of Open Innovation: Technology, Market, and Complexity, 8(3), 118. doi:https://doi.org/10.3390/joitmc8030118
Reddy, R. C., Bhattacharjee, B., Mishra , D., & Mandal , A. (2022). A systematic literature review towards a conceptual framework for enablers and barriers of an enterprise data science strategy. Information Systems and e-Business Management, 20, 223-225. Retrieved from https://link.springer.com/article/10.1007/s10257-022-00550-x
Ristyawan, M. R., Putro, U. S., & Siallagan, M. (2023). Decision making mechanism in resource based theory: A literature review, synthesis, and future research. Cogent Business & Management, 10, 28. doi:https://doi.org/10.1080/23311975.2023.2247217
Ruiz, J. C., Ferreira, J., Goncalves, R. J., & Ortiz, Á. (2025). Relational network of innovation ecosystems generated by digital innovation hubs: a conceptual framework for the interaction processes of DIHs from the perspective of collaboration within and between their. Journal of Intelligent Manufacturing, 36, 1545. doi: https://doi.org/10.1007/s10845-024-02322-5
Sarwar, Z., Song, Z. h., Ali, S. T., Khan, M. A., & Ali, F. (2025). Unveiling the path to innovation: Exploring the roles of big data analytics. Journal of Innovation & Knowledge, 10(1). doi:10.1016/j.jik.2024.100643
Snyder, H. (2019). Literature review as a research methodology: An overview and guidelines. Journal of Business Research, 104, 333-339. doi:https://doi.org/10.1016/j.jbusres.2019.07.039
Tarmidi, D., Taruna, I., S, A. B., & S, V. M. (2023). Big data analytics and key success factor in achieving competitive advantage and performance of small medium enterprises: literature review. Enrichment: Journal of Management, 13(1). doi:https://doi.org/10.35335/enrichment.v13i1.1302
Teece, D. J. (2018). Business models and dynamic capabilities. Long Range Planning, 51, 40-49. doi:https://doi.org/10.1016/j.lrp.2017.06.007
Teece, D. J. (2020). Hand in Glove: Open Innovation and the Dynamic Capabilities Framework. Strategic Management Review. Retrieved from https://www.strategicmanagementreview.net/assets/articles/Teece%20OI.pdf
Thomas, L. D., & Tee, R. (2022). Generativity: A systematic review and conceptualframework. Int J Manag Rev, 24, 278. doi:https://doi.org/10.1111/ijmr.12277
Verhoef, P. C., Broekhuizen, T., Bart, Y., Bhattacharya, A., Dong, J. Q., Fabian, N., & Haenlein, M. (2021). Digital transformation: A multidisciplinary reflection and research agenda. Journal of Business Research, 122, 889-901. doi:https://doi.org/10.1016/j.jbusres.2019.09.022
Virgiawan, A. K., Absharina, E. D., & Fenando, F. (2025). PERAN BIG DATA DALAM MENINGKATKAN DAYA SAING BISNIS DI ERA DIGITAL. Simtek: Jurnal Sistem Informasi dan Teknik Komputer, 10(1). Retrieved from https://ejournal.catursakti.ac.id/index.php/simtek/article/view/1378
Wahyudi, W. H., & Sukmono, R. A. (2023). Marketing Analysis on Social Media to Increase Business Competitiveness on the E-Commerce Company Marketplace. Academia Open, 8(3), 1-13. doi:https://doi.org/10.21070/acopen.8.2023.4021
Wamba, S. F., Dubey, R., Gunasekaran, A., & Akter, S. (2020). The performance effects of big data analytics and supply chain ambidexterity: The moderating effect of environmental dynamism. International Journal of Production Economics, 222, 107498. doi:https://doi.org/10.1016/j.ijpe.2019.09.019
Wissuchek, C., & Zschech, P. (2025). Prescriptive analytics systems revised: a systematic literature review from an information systems perspective. Information Systems and e-Business Management, 23, 353. doi:https://doi.org/10.1007/s10257-024-00688-w
Wu, X., Liang, L., & Chen , S. (2022). How big data alters value creation: through the lens of big data competency. Management Decision, 60(3), 707-734. doi:https://doi.org/10.1108/MD-09-2021-1199
Xu, J., Pero, M. E., Ciccullo, F., & Sianesi, A. (2021). On relating big data analytics to supply chain planning: towards a research agenda. International Journal of Physical Distribution & Logistics Management, 51(6), 656-682. doi:https://doi.org/10.1108/IJPDLM-04-2020-0129
YILDIZ, B., ÇIĞDEM, Ş., KAVALIAUSKIENĖ, I. M., & ČINČIKAITĖ, R. (2024). THE NEXUS OF BIG DATA ANALYTICS, KNOWLEDGE SHARING, AND PRODUCT INNOVATION IN MANUFACTURING. JOURNAL of BUSINESS ECONOMICS & MANAGEMENT, 25(1), 84. doi:https://doi.org/10.3846/jbem.2024.20713
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2026 Ni Putu Dita Saraswati, Radhiansyah Rizqullah, Apriyanti Saragi, Risa Ayuandini, Edi Firdaus

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

