Analisis segmentasi pelanggan dengan model RFM (Recency, Frequency, Monetary) dan K-Means Clustering (Studi kasus: PT XYZ)

Authors

  • Ema Rosary Sitorus Universitas Pembangunan Nasional "VETERAN" Jawa Timur
  • Isna Nugraha Universitas Pembangunan Nasional “Veteran” Jawa Timur

DOI:

https://doi.org/10.31004/jutin.v8i1.39447

Keywords:

Customer Segmentation, K-Means Clustering, Marketing Strategy, RFM

Abstract

Customer segmentation is a crucial process in understanding consumer behavior patterns to support strategic decision making in marketing. The main challenge companies face is accurately segmenting customers based on transaction data. The purpose of this research is to determine and segment customers using the K-Means clustering algorithm based on the RFM (Recency, Frequency, Monetary) model on AMDK sales transaction data at PT XYZ. The research method involves analysis of 111 customer data processed using Orange Data Mining software, with validation of the results using Silhouette Score which is useful in determining the ideal number of clusters. This research produces four customer clusters, with Cluster 4 reflecting customers with the highest level of loyalty, characterized by dominant Frequency and Monetary values, while Cluster 3 describes customers with low loyalty potential. The results of this research provide a scientific basis for the development of more focused and efficient data-based marketing strategies.

References

Adiana, B. E., Soesanti, I., & Permanasari, A. E. (2018). Analisis Segmentasi Pelanggan Menggunakan Kombinasi RFM Model dan Teknik Clustering. JUTEI, 2(1), 23–32. https://doi.org/10.21460/jutei.2017.21.76

Auliasari, K., & Kertaningtyas, M. (2019). Penerapan Algoritma K-Means Untuk Segmentasi Konsumen Menggunakan R. Jurnal Teknologi & Manajemen Informatika, 5(1), 42–49. https://doi.org/10.59134/jsk.v5i2.386

Awalina, E. F. L., & Rahayu, W. I. (2023). Optimalisasi Strategi Pemasaran dengan Segmentasi Pelanggan Menggunakan Penerapan K-Means Clustering pada Transaksi Online Retail. Jurnal Teknologi Dan Informasi, 13(2), 122–137. https://doi.org/10.34010/jati.v13i2.10090

Bykova, E., Vasiliev, I., Bosneaga, V., & Suslov, V. (2024). Application of Neural Networks for Forecasting Energy Security Indicators. Internasional Journal of Scientific Engineering and Research, 12(11), 5–11.

Fawzi, M. G. H., Iskandar, A. S., Erlangga, H., Nurjaya, & Denok, S. (2021). Strategi Pemasaran. Pascal Book.

Gustriansyah, R., Suhandi, N., & Antony, F. (2020). Clustering optimization in RFM Analysis Based on K-Means. Indonesian Journal of Electrical Engineering and Computer Science, 18(1), 470–477. https://doi.org/10.11591/ijeecs.v18.i1.pp470-477

Hananto, V. R., Churniawan, A. D., & Wardhanie, A. P. (2017). Perancangan Analytical CRM untuk Mendukung Segmentasi Pelanggan di Institusi Pendidikan. Jurnal Ilmiah Teknologi Informasi Asia, 11(1), 79–88. https://doi.org/10.32815/jitika.v11i1.55

Hermawan, A., Jayanti, N. R., Saputra, A., Tambunan, C., Baihaqi, D. M., Syahreza, M. A., & Bachtiar, Z. (2024). Optimalisasi Strategi Pemasaran Melalui Analisis RFM pada Dataset Transaksi Ritel Menggunakan Python. Jurnal Manajemen Riset Inovasi, 2(4), 254–267.

Kusumo, H., Sediyono, E., & Marwata, M. (2019). Analisis Algoritma Apriori Untuk Mendukung Strategi Promosi Perguruan Tinggi. Walisongo Journal of Information Technology, 1(1), 51–62.

Nursanti, T. D., Chatra, M. A., Adrian, Haitamy, A. G., Arisandi, D., Masdiantini, P. R., Waty, E., Boari, Y., & Judijanto, L. (2024). Entrepreneurship. PT Sonpedia Publishing Indonesia.

Osborne, J. W. (2013). Best Practice in Data Cleaning. SAGE Publications.

Perdana, Satria, A., Florentin, Sara, F., & Santoso, A. (2022). Analisis Segmentasi Pelanggan Menggunakan K-Means Clustering Studi Kasus Aplikasi Alfagift. Sebatik, 26(2), 446–457. https://doi.org/10.46984/sebatik.v26i2.2134

Reyes, M. (2020). Consumer Behavior and Marketing. Intech Open.

Rizki, M., Devrika, D., Lubis, F. S., Silvia, & Umam, I. H. (2019). Aplikasi Data Mining dalam Penentuan Layout Swalayan dengan Menggunakan Metode MBA. Jurnal Hasil Penelitian Dan Karya Ilmiah, 5(2), 130–138.

Sabuncu, I., Turkan, E., & Polat, H. (2020). Customer Segmentation and Profiling with RFM. Turkish Journal of Marketing, 5(1), 22–36.

Sastya, N. C., & Nugraha, I. (2023). Penerapan Metode CRISP-DM dalam Menganalisis Data untuk Menentukan Customer Behavior di MeatSolution. Jurnal Pendidikan Dan Aplikasi Industri, 10(2), 103–115. https://doi.org/10.33592/unistek.v10i2.3079

Setiawan, Z., Zebus, Rony, Sandra, Y., Suprayitno, D., Hamid, Rahmad, S., Islami, V., & Marsyaf, A. (2024). Buku Ajar Perilaku Konsumen. PT. Sonpedia Publishing Indonesia.

Shaliha, K. M., Angelyna, Nugraha, A. A., Wahisyam, M. H., & Sandi, T. K. (2021). Implementasi K-Means Clustering pada Online Retail berdasarkan Recency , Frequency , dan Monetary. Gunung Djati Conference Series, 3(1), 99–106.

Taqwim, W. A., Setiawan, N. Y., & Bachtiar, Fitra, A. (2019). Analisis Segmentasi Pelanggan Dengan RFM Model Pada Pt . Arthamas Citra Mandiri Menggunakan Metode Fuzzy C-Means Clustering. Jurnal Pengembangan Teknologi Informasi Dan Ilmu Komputer, 3(2), 1986–1993.

Trianasari, N., & Permadi, T. A. (2024). Analysis of Product Recommendation Models at Each Fixed Broadband Sales Location Using K-Means, DBSCAN, Hierarchical Clustering, SVM, RF, and ANN. Journal of Applied Data Sciences, 5(2), 636–652. https://doi.org/10.47738/jads.v5i2.210

Wahyuni, S., Wulansari, T. T., & Fahrullah, F. (2023). Segmentasi Pelanggan Berdasarkan Analisis Recency, Frequency, Monetary Menggunakan Algoritma K-Means Pada CV. Toedjoe Sinar Group. Jurnal Rekayasa Teknologi Informasi (JURTI), 7(2), 180–187. https://doi.org/10.30872/jurti.v7i2.8748

Wildemuth, B. M. (2017). Application of Social Reserch Methods to Questions in Information and Library Science. ABC-CLIO, LLC.

Yunus, E. (2016). Manajemen Strategis. CV ANDI OFFSET.

Downloads

Published

2025-01-13

How to Cite

Sitorus, E. R., & Nugraha, I. (2025). Analisis segmentasi pelanggan dengan model RFM (Recency, Frequency, Monetary) dan K-Means Clustering (Studi kasus: PT XYZ). Jurnal Teknik Industri Terintegrasi (JUTIN), 8(1), 266–278. https://doi.org/10.31004/jutin.v8i1.39447

Issue

Section

Articles of Research

Similar Articles

1 2 3 > >> 

You may also start an advanced similarity search for this article.