Penerapan Algoritma K-Means untuk Pengelompokan Data Mahasiswa Baru Program Studi Teknik Informatika di Universitas Pahlawan Tuanku Tambusai

Authors

  • Kasini Kasini Teknik Informatika, Fakultas Teknik, Universitas Pahlawan Tuanku Tambusai
  • Hidayati Rusnedy Universitas Pahlawan Tuanku Tambusai
  • Lailatul Syifa Tanjung Teknik Industri, Fakultas Teknik, Universitas Pahlawan Tuanku Tambusai
  • Novi Yona Sidratul Munti Teknik Informatika, Universitas Islam Sumatera Barat

DOI:

https://doi.org/10.31004/jutin.v8i1.41449

Keywords:

Data Mining, Clustering, K-Means, Informatics Engineering, Universitas Pahlawan Tuanku Tambusai

Abstract

Pahlawan Tuanku Tambusai University (UP) in Riau Province has an Informatics Engineering Study Program that accepts new students every year from various regions around Bangkinang. Incoming student data is processed to assist decision making, especially in the field of promotion. This study aims to apply the K-Means algorithm to Informatics Engineering Study Program student data, with attributes of student name and district of origin, to group regions based on promotion potential. The K-Means method is used to group data into three clusters: High Priority, Medium Priority, and Low Priority. The results of the analysis show that there are 22 regions included in the High Priority Cluster, 23 regions in the Medium Priority Cluster, and 43 regions in the Low Priority Cluster. Regions in the High Priority Cluster are the main priority for promotion strategies, while regions in the Medium Priority and Low Priority Clusters require a more focused promotion approach. This study provides an important contribution to the promotion strategy of the Informatics Engineering Study Program at UP by using a data mining approach to increase the visibility of the study program in the community

References

Aswan, Y., Defit, S., & Nurcahyo, G. W. (2021). Algoritma K-Means Clustering dalam Mengklasifikasi Data Daerah Rawan Tindak Kriminalitas (Polres Kepulauan Mentawai). Jurnal Sistim Informasi Dan Teknologi, 3, 245–250. https://doi.org/10.37034/jsisfotek.v3i4.73

Fadhilaturrahmi, F., Erlinawati, E., & Ananda, R. (2020). Workshop Sinta 2 dan Google Schoolar di Universitas Pahlawan Tuanku Tambusai. Jurnal Abdidas, 1(4), 203–209. https://doi.org/10.31004/abdidas.v1i4.45

Hidayati, N., & Kasini, K. (2023). Classification of books at SMP YPK Pematang Siantar using the k-means clustering method. Jurnal Mantik, 7(2). http://iocscience.org/ejournal/index.php/mantik/article/view/3846%0Ahttp://iocscience.org/ejournal/index.php/mantik/article/download/3846/2825

Hidayati, N., & Rahmah, S. A. (2022). Clasterization Of Zeeida Product Sales Using K - Means Method In Medan Distributors. Jurnal Mantik, 6(36), 1685–1692. https://ejournal.iocscience.org/index.php/mantik/article/view/2545%0Ahttps://ejournal.iocscience.org/index.php/mantik/article/download/2545/2108

Nahjan, M. R., Nono Heryana, & Apriade Voutama. (2023). Implementasi Rapidminer Dengan Metode Clustering K-Means Untuk Analisa Penjualan Pada Toko Oj Cell. JATI (Jurnal Mahasiswa Teknik Informatika), 7(1), 101–104. https://doi.org/10.36040/jati.v7i1.6094

Noviyanto, N. (2020). Penerapan Data Mining dalam Mengelompokkan Jumlah Kematian Penderita COVID-19 Berdasarkan Negara di Benua Asia. Paradigma - Jurnal Komputer Dan Informatika, 22(2), 183–188. https://doi.org/10.31294/p.v22i2.8808

Okfalisa, Angraini, Novi, S., Rusnedy, H., Handayani, L., & Mustakim. (2021). Identification of the Distribution Village Maturation : Village Classification Using Density-Based Spatial Clustering of Application with Noise. Jurnal Teknologi Dan Sistem Komputer, Apr. https://doi.org/https://doi.org/10.14710/jtsiskom.2021.13998

Pattipeilohy, R. L., & Pakereng, M. A. I. (2023). Penerapan K-Means Clustering Pada Data Mahasiswa Fakultas Interdisiplin Program Studi D4 Destinasi Pariwisata Untuk Menentukan Strategi Promosi. Jurnal Sains Komputer & Informatika (J-SAKTI, 7(1), 320–331.

Rahmalinda, N. A., & Jananto, A. (2022). Penerapan Metode K-Means Clustering Dalam Menentukan Strategi Promosi Berdasarkan Data Penerimaan Mahasiswa Baru. Jurnal Tekno Kompak, 16(2), 163. https://doi.org/10.33365/jtk.v16i2.1971

Rahmayani, M. T. I., & Hidayati, N. (2022). Implemention K-Means Algorithm Determine the Recovery Rate Of Covid-19 Patients In Indonesia. Jurnal Mantik, 6(36), 127–135. http://iocscience.org/ejournal/index.php/mantik/article/view/2059%0Ahttps://iocscience.org/ejournal/index.php/mantik/article/download/2059/1754

Rusnedy, H., Nurcahyo, G. W., & Sumijan, S. (2021). Identifikasi Tingkat Pemakaian Obat Menggunakan Metode Fuzzy C-Means. Jurnal Informasi Dan Teknologi, 3, 196–201. https://doi.org/10.37034/jidt.v3i4.152

Downloads

Published

2025-01-17

How to Cite

Kasini, K., Rusnedy, H., Tanjung, L. S., & Munti, N. Y. S. (2025). Penerapan Algoritma K-Means untuk Pengelompokan Data Mahasiswa Baru Program Studi Teknik Informatika di Universitas Pahlawan Tuanku Tambusai. Jurnal Teknik Industri Terintegrasi (JUTIN), 8(1), 1378–1387. https://doi.org/10.31004/jutin.v8i1.41449

Issue

Section

Articles of Research

Similar Articles

1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.