PENGGUNAAN KECERDASAAN BUATAN DALAM DIAGNOSA DAN PENGELOLAAN LUKA AKUT DAN KRONIS
DOI:
https://doi.org/10.31004/jrpp.v8i2.44525Keywords:
Kecerdasan Buatan, Diagnosis Luka, Luka Kronis, Machine Learning, Deep LearningAbstract
Latar Belakang: Luka akut maupun kronis membutuhkan waktu penyembuhan yang lama dan memiliki risiko komplikasi tinggi. Metode diagnosis konvensional masih mengandalkan evaluasi manual oleh tenaga medis, yang subjektif dan kurang akurat. Kecerdasan buatan (AI) menawarkan pendekatan inovatif dalam diagnosis dan pemantauan luka dengan meningkatkan akurasi serta efisiensi perawatan. Metode: Systematic review ini mengikuti pedoman PRISMA 2020, dengan pencarian literatur pada PubMed, Scopus, IEEE Xplore, Web of Science, dan Cochrane Library untuk studi yang dipublikasikan antara 2018–2024. Studi yang dipilih harus melibatkan AI dalam diagnosis atau manajemen luka akut dan kronis. Data yang diekstraksi mencakup jenis AI, populasi studi, dataset yang dianalisis, dan outcome utama, seperti akurasi diagnosis dan efektivitas terapi. Hasil: Sebanyak 17 studi memenuhi kriteria inklusi. AI yang digunakan mencakup machine learning, deep learning, dan computer vision, yang diterapkan dalam analisis gambar luka serta pemantauan penyembuhan luka. Studi menunjukkan bahwa AI memiliki akurasi tinggi (85–97%) dalam diagnosis luka dan dapat mempercepat penyembuhan luka dibandingkan metode manual. AI juga dibandingkan dengan metode konvensional, seperti Laser Doppler Imaging (LDI) dan skala manual (PUSH, BWAT), serta terbukti lebih akurat dalam penilaian luka. Kesimpulan: AI memiliki potensi besar dalam meningkatkan diagnosis dan manajemen luka kronis dengan meningkatkan akurasi, mengurangi subjektivitas, dan mempercepat proses penyembuhan. Integrasi AI dengan telemedicine juga membuka peluang pemantauan jarak jauh, terutama di daerah dengan keterbatasan tenaga medis. Namun, tantangan seperti kebutuhan dataset berkualitas tinggi dan regulasi keamanan data masih perlu diatasi agar AI dapat diterapkan secara luas dalam praktik klinis.References
Ahmajärvi, K., Isoherranen, K., & Venermo, M. (2022). Cohort study of diagnostic delay in the clinical pathway of patients with chronic wounds in the primary care setting. BMJ Open, 12(11), e062673. https://doi.org/10.1136/BMJOPEN-2022-062673
Alabdulhafith, M., Ba Mahel, A. S., Samee, N. A., Mahmoud, N. F., Talaat, R., Muthanna, M. S. A., & Nassef, T. M. (2024). Automated wound care by employing a reliable U-Net architecture combined with ResNet feature encoders for monitoring chronic wounds. Frontiers in Medicine, 11(January), 1–13. https://doi.org/10.3389/fmed.2024.1310137
Anisuzzaman, D. M., Wang, C., Rostami, B., Gopalakrishnan, S., Niezgoda, J., & Yu, Z. (2022). Image-Based Artificial Intelligence in Wound Assessment: A Systematic Review. Https://Home.Liebertpub.Com/Wound, 11(12), 687–709. https://doi.org/10.1089/WOUND.2021.0091
Barakat-Johnson, M., Jones, A., Burger, M., Leong, T., Frotjold, A., Randall, S., Fethney, J., & Coyer, F. (2024). Reshaping Wound Care: Evaluation of an Artificial Intelligence App to Improve Wound Assessment and Management. Studies in Health Technology and Informatics, 310, 941–945. https://doi.org/10.3233/SHTI231103
Berezo, M., Budman, J., Deutscher, D., Hess, C. T., Smith, K., & Hayes, D. (2022). Predicting Chronic Wound Healing Time Using Machine Learning. Advances in Wound Care, 11(6), 281–296. https://doi.org/10.1089/wound.2021.0073
Bohr, A., & Memarzadeh, K. (2020). The rise of artificial intelligence in healthcare applications. Artificial Intelligence in Healthcare, 25–60. https://doi.org/10.1016/B978-0-12-818438-7.00002-2
Budman, J., Keenahan, K., Acharya, S., & Brat, G. A. (2015). Design of A Smartphone Application for Automated Wound Measurements for Home Care. Iproceedings, 1(1), e16. https://doi.org/10.2196/iproc.4703
Cao, Y., & Wang, Y. (2024). The Impact of Artificial Intelligence and Deep Learning-based Family-centered Care Interventions on the Healing of Chronic Lower Limb Wounds in Children. IEEE Access, 12(June), 125557–125570. https://doi.org/10.1109/ACCESS.2024.3454769
Cassidy, B., Hoon Yap, M., Pappachan, J. M., Ahmad, N., Haycocks, S., O’Shea, C., Fernandez, C. J., Chacko, E., Jacob, K., & Reeves, N. D. (2023). Artificial intelligence for automated detection of diabetic foot ulcers: A real-world proof-of-concept clinical evaluation. Diabetes Research and Clinical Practice, 205(October), 110951. https://doi.org/10.1016/j.diabres.2023.110951
Chairat, S., Chaichulee, S., Dissaneewate, T., & Wangkulangkul, P. (2023). AI-Assisted Assessment of Wound Tissue with Automatic Color and Measurement Calibration on Images Taken with a Smartphone. 1–22.
Chan, K. S., Chan, Y. M., Tan, A. H. M., Liang, S., Cho, Y. T., Hong, Q., Yong, E., Chong, L. R. C., Zhang, L., Tan, G. W. L., Chandrasekar, S., & Lo, Z. J. (2022). Clinical validation of an artificial intelligence-enabled wound imaging mobile application in diabetic foot ulcers. International Wound Journal, 19(1), 114–124. https://doi.org/10.1111/iwj.13603
Dabas, M., Schwartz, D., Beeckman, D., & Gefen, A. (2023). Application of Artificial Intelligence Methodologies to Chronic Wound Care and Management: A Scoping Review. Https://Home.Liebertpub.Com/Wound, 12(4), 205–240. https://doi.org/10.1089/WOUND.2021.0144
Dankwa-Mullan, I., Rivo, M., Sepulveda, M., Park, Y., Snowdon, J., & Rhee, K. (2019). Transforming Diabetes Care Through Artificial Intelligence: The Future Is Here. Population Health Management, 22(3), 229–242. https://doi.org/10.1089/POP.2018.0129
Falanga, V., Isseroff, R. R., Soulika, A. M., Romanelli, M., Margolis, D., Kapp, S., Granick, M., & Harding, K. (2022). Chronic wounds. Nature Reviews Disease Primers 2022 8:1, 8(1), 1–21. https://doi.org/10.1038/s41572-022-00377-3
Griffa, D., Natale, A., Merli, Y., Starace, M., Curti, N., Mussi, M., Castellani, G., Melandri, D., Piraccini, B. M., & Zengarini, C. (2024). Artificial Intelligence in Wound Care: A Narrative Review of the Currently Available Mobile Apps for Automatic Ulcer Segmentation. BioMedInformatics 2024, Vol. 4, Pages 2321-2337, 4(4), 2321–2337. https://doi.org/10.3390/BIOMEDINFORMATICS4040126
Gupta, R., Goldstone, L., Eisen, S., Ramachandram, D., Cassata, A., Fraser, R. D. J., Ramirez-Garcialuna, J. L., Bartlett, R., & Allport, J. (2024a). Towards an AI-Based Objective Prognostic Model for Quantifying Wound Healing. IEEE Journal of Biomedical and Health Informatics, 28(2), 666–677. https://doi.org/10.1109/JBHI.2023.3251901
Gupta, R., Goldstone, L., Eisen, S., Ramachandram, D., Cassata, A., Fraser, R. D. J., Ramirez-Garcialuna, J. L., Bartlett, R., & Allport, J. (2024b). Towards an AI-Based Objective Prognostic Model for Quantifying Wound Healing. IEEE Journal of Biomedical and Health Informatics, 28(2), 666–677. https://doi.org/10.1109/JBHI.2023.3251901
Hao, M., & Sun, J. (2023). Nursing Intervention of Children’s Lower Limb Chronic Wound Healing Under Artificial Intelligence. IEEE Access, 11(November), 141090–141099. https://doi.org/10.1109/ACCESS.2023.3335192
Hidayat, E., Marhum, S. S., Lario, S. H. T., Safitri, R., Saranianingsi, U., Yenni, Y., Jayanti, A. I., Bianti, N., Safitri, R. A., & Saputra, A. D. (2024). Program Peningkatan Kognitif Tentang Perawatan Luka Sehari-Hari Pada Masyarakat Beresiko Di Lingkungan Martayasa. Community Development Journal : Jurnal Pengabdian Masyarakat, 5(4), 7935–7938. https://doi.org/10.31004/CDJ.V5I4.31532
Howell, R. S., Liu, H. H., Khan, A. A., Woods, J. S., Lin, L. J., Saxena, M., Saxena, H., Castellano, M., Petrone, P., Slone, E., Chiu, E. S., Gillette, B. M., & Gorenstein, S. A. (2021). Development of a Method for Clinical Evaluation of Artificial Intelligence-Based Digital Wound Assessment Tools. JAMA Network Open, 4(5), 1–12. https://doi.org/10.1001/jamanetworkopen.2021.7234
Isoherranen, K., O’Brien, J. J., Barker, J., Dissemond, J., Hafner, J., Jemec, G. B. E., Kamarachev, J., Läuchli, S., Montero, E. C., Nobbe, S., Sunderkötter, C., & Velasco, M. L. (2019). Atypical wounds. Best clinical practice and challenges. Https://Doi.Org/10.12968/Jowc.2019.28.Sup6.S1, 28, S1–S92. https://doi.org/10.12968/JOWC.2019.28.SUP6.S1
Jain, A., Way, D., Gupta, V., Gao, Y., De Oliveira Marinho, G., Hartford, J., Sayres, R., Kanada, K., Eng, C., Nagpal, K., Desalvo, K. B., Corrado, G. S., Peng, L., Webster, D. R., Dunn, R. C., Coz, D., Huang, S. J., Liu, Y., Bui, P., & Liu, Y. (2021). Development and Assessment of an Artificial Intelligence-Based Tool for Skin Condition Diagnosis by Primary Care Physicians and Nurse Practitioners in Teledermatology Practices. JAMA Network Open, 4(4), 1–14. https://doi.org/10.1001/jamanetworkopen.2021.7249
Jaul, E., Barron, J., Rosenzweig, J. P., & Menczel, J. (2018). An overview of co-morbidities and the development of pressure ulcers among older adults. BMC Geriatrics, 18(1), 1–11. https://doi.org/10.1186/S12877-018-0997-7/FIGURES/1
Kim, J., Lee, S. M., Kim, D. E., Kim, S., Chung, M. J., Kim, Z., Kim, T., & Lee, K. T. (2024). Development of an Automated Free Flap Monitoring System Based on Artificial Intelligence. JAMA Network Open, 7(7), e2424299. https://doi.org/10.1001/jamanetworkopen.2024.24299
Kolimi, P., Narala, S., Nyavanandi, D., Youssef, A. A. A., & Dudhipala, N. (2022). Innovative Treatment Strategies to Accelerate Wound Healing: Trajectory and Recent Advancements. Cells 2022, Vol. 11, Page 2439, 11(15), 2439. https://doi.org/10.3390/CELLS11152439
Lee, J. J., Abdolahnejad, M., Morzycki, A., Freeman, T., Chan, H., Hong, C., Joshi, R., & Wong, J. N. (2024). Comparing Artificial Intelligence Guided Image Assessment to Current Methods of Burn Assessment. Journal of Burn Care & Research, 1–8. https://doi.org/10.1093/jbcr/irae121
Li, S., Renick, P., Senkowsky, J., Nair, A., & Tang, L. (2021). Diagnostics for Wound Infections. Https://Home.Liebertpub.Com/Wound, 10(6), 317–327. https://doi.org/10.1089/WOUND.2019.1103
Lowe, H., Woodd, S., Lange, I. L., Janjanin, S., Barnett, J., & Graham, W. (2021). Challenges and opportunities for infection prevention and control in hospitals in conflict-affected settings: a qualitative study. Conflict and Health, 15(1), 1–10. https://doi.org/10.1186/S13031-021-00428-8/METRICS
Maida1, W. H., Hidayat2, E., & Paundanan3, M. (2023). Faktor-Faktor yang Berhubungan dengan Resiliensi Pasien dengan Diabetes Melitus Tipe II yang Menjalani Perawatan di UPT RSUD Banggai. Jurnal Pendidikan Tambusai, 7(3), 21240–21254. https://doi.org/10.31004/JPTAM.V7I3.9871
Monge, L., Gnavi, R., Carnà, P., Broglio, F., Boffano, G. M., & Giorda, C. B. (2020). Incidence of hospitalization and mortality in patients with diabetic foot regardless of amputation: a population study. Acta Diabetologica, 57(2), 221–228. https://doi.org/10.1007/S00592-019-01412-8/METRICS
Moura, F. S. E., Amin, K., & Ekwobi, C. (2021). Artificial intelligence in the management and treatment of burns: a systematic review. Burns & Trauma, 9. https://doi.org/10.1093/BURNST/TKAB022
Olsson, M., Järbrink, K., Divakar, U., Bajpai, R., Upton, Z., Schmidtchen, A., & Car, J. (2019). The humanistic and economic burden of chronic wounds: A systematic review. Wound Repair and Regeneration, 27(1), 114–125. https://doi.org/10.1111/WRR.12683
Park, M. W., & Sung, M. Y. (2024). Automated Surgical Wound Classification for Intelligent Emergency Care Applications. International Journal of Electrical and Computer Engineering Systems, 15(8), 663–673. https://doi.org/10.32985/ijeces.15.8.4
Rajasekaran, M., Ranganathan, C. S., Manikandan, G., Bhuvaneswari, G., Ganeshbabu, T. R., & Rajmohan, M. (2024). Cloud-Based AI Solutions for Early Wound Infection Detection and Treatment Recommendations. 4th International Conference on Sustainable Expert Systems, ICSES 2024 - Proceedings, 591–596. https://doi.org/10.1109/ICSES63445.2024.10763001
Ramachandram, D., Ramirez-GarciaLuna, J. L., Fraser, R. D. J., Martínez-Jiménez, M. A., Arriaga-Caballero, J. E., & Allport, J. (2022). Fully Automated Wound Tissue Segmentation Using Deep Learning on Mobile Devices: Cohort Study. JMIR MHealth and UHealth, 10(4), e36977. https://doi.org/10.2196/36977
Reifs, D., Casanova-Lozano, L., Reig-Bolaño, R., & Grau-Carrion, S. (2023). Clinical Validation of Computer Vision and Artificial Intelligence Algorithms for Wound Measurement and Tissue Classification in Wound Care. Informatics in Medicine Unlocked, 37(December 2022). https://doi.org/10.1016/j.imu.2023.101185
Sen, C. K. (2019). Human Wounds and Its Burden: An Updated Compendium of Estimates. Advances in Wound Care, 8(2), 39–48. https://doi.org/10.1089/WOUND.2019.0946/ASSET/IMAGES/LARGE/FIGURE1.JPEG
Sharma, S., Rawal, R., & Shah, D. (2023). Addressing the challenges of AI-based telemedicine: Best practices and lessons learned. Journal of Education and Health Promotion, 12(1). https://doi.org/10.4103/JEHP.JEHP_402_23
Tanner, J., Rochon, M., Harris, R., Beckhelling, J., Jurkiewicz, J., Mason, L., Bouttell, J., Bolton, S., Dummer, J., Wilson, K., Dhoonmoon, L., & Cariaga, K. (2024). Digital wound monitoring with artificial intelligence to prioritise surgical wounds in cardiac surgery patients for priority or standard review: protocol for a randomised feasibility trial (WISDOM). BMJ Open, 14(9), e086486. https://doi.org/10.1136/bmjopen-2024-086486
Timmins, B. A., Thomas Riché, C., Saint-Jean, M. W., Tuck, J., & Merry, L. (2018). Nursing wound care practices in Haiti: facilitators and barriers to quality care. International Nursing Review, 65(4), 542–549. https://doi.org/10.1111/INR.12438
Tottoli, E. M., Dorati, R., Genta, I., Chiesa, E., Pisani, S., & Conti, B. (2020). Skin Wound Healing Process and New Emerging Technologies for Skin Wound Care and Regeneration. Pharmaceutics 2020, Vol. 12, Page 735, 12(8), 735. https://doi.org/10.3390/PHARMACEUTICS12080735
Wu, Y., Wu, L., & Yu, M. (2024). The clinical value of intelligent wound measurement devices in patients with chronic wounds: A scoping review. International Wound Journal, 21(3), e14843. https://doi.org/10.1111/IWJ.14843
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Elin Hidayat, Agnes Erlita Patade, Sisilia Ramang, Waode Fitrah Sari

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.




