Pemodelan karakteristik pengeringan pada proses pengeringan nanas (ananas comosus)
DOI:
https://doi.org/10.31004/jutin.v8i1.42020Keywords:
Pineapple; characteristics; drying; Modelling; Thin layerAbstract
The thin layer model describes the drying process uniformly, regardless of the control mechanism. Fundamentally, using experimental data on dried materials can be explained by the method used. The purpose of this research is to determine the characteristics of the pineapple drying process using a thin layer model. Drying using the oven method at 60°C. The thin layer drying model uses Newton, logarithmic, and Midilli models. The statistical parameters used are R2 and SSE. The water content obtained did not differ much between the two varieties, namely 13, 27, and 13.14 (% db). The results of the comparison of the three models used lead to different results with R² values of 0.89–0.96 and SSE 0.0095–0.0013 based on the non-linear regression analysis used. The Midilli model shows the best results with R² parameters of 0.06 and 0.94 and SSE of 0.0019 and 0.0025..References
Akpinar, E. K. (2006). Mathematical modelling of thin layer drying process under open sun of some aromatic plants. Journal of Food Engineering, 77(4), 864–870. https://doi.org/10.1016/j.jfoodeng.2005.08.014
Alara, O. R., Abdurahman, N. H., & Olalere, O. A. (2019). Mathematical modelling and morphological properties of thin layer oven drying of Vernonia amygdalina leaves. Journal of the Saudi Society of Agricultural Sciences, 18(3), 309–315. https://doi.org/10.1016/j.jssas.2017.09.003
El-Beltagy, A., Gamea, G. R., & Essa, A. H. A. (2007). Solar drying characteristics of strawberry. Journal of Food Engineering, 78(2), 456–464. https://doi.org/10.1016/j.jfoodeng.2005.10.015
Hossain, M. A., Hoque, M. M., Hossain, M. M., Kabir, M. H., Yasin, M., & Islam, M. A. (2020). Biochemical , Microbiological and Organoleptic Properties of Probiotic Pineapple Juice Developed by Lactic Acid Bacteria.
Hossain, M. A., Talukder, S., Zaman, A. U., & Sarkar, A. (2024). Ultrasonics Sonochemistry Effective drying processes for Taikor ( Garcinia pedunculata Roxb .) fruit by ultrasound-assisted osmotic pretreatment : Analysis of quality and kinetic models. Ultrasonics Sonochemistry, 103(January), 106784. https://doi.org/10.1016/j.ultsonch.2024.106784
Ignacio, L., Lorenzo, L. I., Marcus, N., & Joachim, M. (2019). Mathematical modelling of the thin layer drying of pineapple ( Ananas comosus , L . ): experiment at village-scale in a greenhouse type solar dryer Modelo matemático de la capa delgada de piña ( Ananas comosus , L .): Experimento en un secador solar tipo . número 2, 1–10.
Kumar, D., & Tarafdar, A. (2019). Intelligent modeling and detailed analysis of drying , hydration , thermal , and spectral characteristics for convective drying of chicken breast slices. March, 1–14. https://doi.org/10.1111/jfpe.13087
López-Cerino, I., López-Cruz, I. L., Nagle, M., Mahayothee, B., & Müller, J. (2018). Thin layer drying of Pineapple (Ananas comosus, L.). Ingeniería, Investigación y Tecnología, 19(3), 331–344. https://doi.org/10.22201/fi.25940732e.2018.19n3.028
Mohammed, S., Edna, M., & Siraj, K. (2020). The effect of traditional and improved solar drying methods on the sensory quality and nutritional composition of fruits: A case of mangoes and pineapples. Heliyon, 6(6), e04163. https://doi.org/10.1016/j.heliyon.2020.e04163
Olanipekun, B. F., Oyelade, O. J., Adebisi, M. G., & Adenaya, T. A. (2015). MATHEMATICAL MODELING OF THIN-LAYER. 39, 1431–1441. https://doi.org/10.1111/jfpp.12362
Onwude, D. I., Hashim, N., Janius, R. B., Nawi, N. M., & Abdan, K. (2016). Modeling the Thin-Layer Drying of Fruits and Vegetables: A Review. Comprehensive Reviews in Food Science and Food Safety, 15(3), 599–618. https://doi.org/10.1111/1541-4337.12196
Saifullah, M., McCullum, R., McCluskey, A., & Vuong, Q. (2019). Effects of different drying methods on extractable phenolic compounds and antioxidant properties from lemon myrtle dried leaves. Heliyon, 5(12), e03044. https://doi.org/10.1016/j.heliyon.2019.e03044
Saputri, L., Merici Punglipa Lewuras, A., Nilna Minah, F., & Astuti, S. (2022). Pengaruh Suhu dan Waktu Pengeringan Terhadap Kadar Air dan Kadar Vitamin C pada Bubuk Cabai Rawit (Capsicum Frutescens L.). Prosiding SENIATI, 6(3), 636–643. https://doi.org/10.36040/seniati.v6i3.4942
Sitompul, D., Malinda, D., & Salafudin. (2021). Pemodelan Karakteristik Pengeringan dan Analisis Perpindahan Panas pada Pengeringan Kentang. Rekayasa Hijau: Jurnal Teknologi Ramah Lingkungan, 5(2), 188–196. https://doi.org/10.26760/jrh.v5i2.188-196
Tunde-Akintunde, T. Y. (2011). Mathematical modeling of sun and solar drying of chilli pepper. Renewable Energy, 36(8), 2139–2145. https://doi.org/10.1016/j.renene.2011.01.017
Victor, S. L., Garg, M. K., & Pawar, K. (2019). Effect of Different Drying Techniques on the Quality Attributes of Pineapple Powder. International Journal of Current Microbiology and Applied Sciences, 8(02), 324–341. https://doi.org/10.20546/ijcmas.2019.802.038
Wang, Z., Sun, J., Liao, X., Chen, F., Zhao, G., Wu, J., & Hu, X. (2007). Mathematical modeling on hot air drying of thin layer apple pomace. Food Research International, 40(1), 39–46. https://doi.org/10.1016/j.foodres.2006.07.017
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Fachri Ibrahim Nasution, Arief Fazlul Rahman, Widya Laila, Riri Nasirly, Fadli Arsi

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.