Simulasi Monte Carlo dalam Estimasi Distribusi Pendapatan dan Evaluasi Kelayakan Finansial UMKM Teh Poci
DOI:
https://doi.org/10.31004/jutin.v9i1.55892Keywords:
Monte Carlo Simulation, Income Distribution, Financial Feasibility, MSMEs, Risk AnalysisAbstract
This study aims to analyze income distribution and evaluate the financial feasibility of Teh Poci MSMEs using a Monte Carlo simulation approach. The data consist of daily revenue over the last 30 days, which were processed to construct a probabilistic monthly income distribution through 10,000 simulation iterations. The results indicate that the average monthly revenue is approximately IDR 46.82 million, with a near-normal distribution and relatively low variability. The probability of achieving the target revenue of IDR 45 million exceeds 90%, while the Value at Risk (VaR) remains within an acceptable threshold. Sensitivity analysis reveals that small changes in daily average revenue significantly affect monthly projections. Overall, the Monte Carlo approach provides a comprehensive risk assessment framework and demonstrates that the Teh Poci MSME is financially feasible under normal operating conditions.References
An, L.-S., Lee, S., & Lee, Y.-J. (2025). Probabilistic fatigue parameter estimation in crack growth models using solely S-N data. Structure and Infrastructure Engineering. https://doi.org/10.1080/15732479.2025.2547347
Boone, E., & Ghanam, R. (2023). STATISTICAL INFERENCE ON FRACTIONAL ADVECTION-DIFFUSION TRANSPORT SYSTEMS. International Journal of Applied Mathematics, 36(1), 127–144. https://doi.org/10.12732/ijam.v36i1.11
Chorol, L., & Gupta, S. K. (2023). Hybrid analytic network process (ANP)-Entropy model, time series analysis for predicting nitrate and fluoride in groundwater and cumulative health risk assessment. Journal of Cleaner Production, 428. https://doi.org/10.1016/j.jclepro.2023.139316
de Amorim, F. R. D., Guimarães, C. C., Afonso, P., & Tobias, M. S. G. (2024). Forecasting Cost Risks of Corn and Soybean Crops through Monte Carlo Simulation. Applied Sciences (Switzerland), 14(17). https://doi.org/10.3390/app14178030
Du, J., & Fu, J. (2025). A multi-scale self-attention method with uncertainty quantification for probabilistic remaining useful life prediction of rotating machinery. Engineering Research Express, 7(3). https://doi.org/10.1088/2631-8695/adeeea
Edlinger, M., Van Smeden, M., Alber, H. F., Wanitschek, M., & van Calster, B. (2022). Risk prediction models for discrete ordinal outcomes: Calibration and the impact of the proportional odds assumption. Statistics in Medicine, 41(8), 1334–1360. https://doi.org/10.1002/sim.9281
Ghezal, A., & Alzeley, O. (2024). Probabilistic properties and estimation methods for periodic threshold autoregressive stochastic volatility. AIMS Mathematics, 9(5), 11805–11832. https://doi.org/10.3934/math.2024578
Gupta, M., Dorn, E., Nguyen, L., & McFarlan, A. (2025). Techno-economic evaluation of pulp and paper mill derived biochar, liquid and gaseous biofuel precursors: A British Columbia case study. Biomass and Bioenergy, 195. https://doi.org/10.1016/j.biombioe.2025.107677
Janicki, T. D., Kennelly, T. R., Leonard, J., Roberts, C., Rao, R. R., & Rodgers, T. M. (2025). On-lattice kinetic Monte Carlo approaches for modeling molecular anisotropy in resveratrol crystallization. Modelling and Simulation in Materials Science and Engineering, 33(5). https://doi.org/10.1088/1361-651X/ade176
Liu, M., Li, C., Zhang, Y., Yang, M., Cui, X., Li, B., Gao, T., Wang, D., & An, Q. (2023). Heat Transfer Mechanism and Convective Heat Transfer Coefficient Model of Cryogenic Air Minimum Quantity Lubrication Grinding Titanium Alloy; Jixie Gongcheng Xuebao/Journal of Mechanical Engineering, 59(23), 343–357. https://doi.org/10.3901/JME.2023.23.343
Ly, S., Xie, J., Franz-Erich Wolter, F.-E., Nguyen, H. D., & Weng, Y. (2023). T-shape data and probabilistic remaining useful life prediction for Li-ion batteries using multiple non-crossing quantile long short-term memory. Applied Energy, 349. https://doi.org/10.1016/j.apenergy.2023.121355
Roy, A., Chakraborty, S., & Adhikari, S. (2023). Reliability Analysis of Structures by Active Learning Enhanced Sparse Bayesian Regression. Journal of Engineering Mechanics, 149(5). https://doi.org/10.1061/JENMDT.EMENG-6964
Sun, H., Li, X., Duan, Y., & Zhang, N. (2023). Benefit sharing model of hydropower development based on input perspective: a case study of Xiluodu project in China. Frontiers in Sustainable Food Systems, 7. https://doi.org/10.3389/fsufs.2023.1174602
Yudistira, I. G. A. A., Nariswari, R., Arifin, S., Abdillah, A. A., Prasetyo, P. W., & Susyanto, N. (2024). Program Evaluation and Review Technique (PERT) Analysis to Predict Completion Time and Project Risk Using Discrete Event System Simulation Method. CommIT Journal, 18(1), 67–76. https://doi.org/10.21512/commit.v18i1.8495
Zhai, S., Du, G., Peng, T., Wang, Y., & Shang, Z. (2025). Probability analysis of vertical drainage improvement for soft soil settlement prediction via a Bayesian back analysis framework and the simplified Hypothesis B method. Journal of Intelligent Construction, 3(1). https://doi.org/10.26599/JIC.2025.9180077
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2026 Bintang Bintang, Nazwa Alya, Hernita Zaidani Nisrina, Risky Setiawan Ramadhan, Galih Fachrezy

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

