Simulasi Monte Carlo dalam Estimasi Distribusi Pendapatan dan Evaluasi Kelayakan Finansial UMKM Teh Poci

Authors

  • Bintang Bintang Universitas Al Azhar Medan
  • Nazwa Alya Universitas Al-Azhar, Medan, Sumatera Utara
  • Hernita Zaida Nisrina Universitas Al-Azhar, Medan, Sumatera Utara
  • Risky Setiawan Ramadhan Universitas Al-Azhar, Medan, Sumatera Utara
  • Galih Fachrezy Universitas Al-Azhar, Medan, Sumatera Utara

DOI:

https://doi.org/10.31004/jutin.v9i1.55892

Keywords:

Monte Carlo Simulation, Income Distribution, Financial Feasibility, MSMEs, Risk Analysis

Abstract

This study aims to analyze income distribution and evaluate the financial feasibility of Teh Poci MSMEs using a Monte Carlo simulation approach. The data consist of daily revenue over the last 30 days, which were processed to construct a probabilistic monthly income distribution through 10,000 simulation iterations. The results indicate that the average monthly revenue is approximately IDR 46.82 million, with a near-normal distribution and relatively low variability. The probability of achieving the target revenue of IDR 45 million exceeds 90%, while the Value at Risk (VaR) remains within an acceptable threshold. Sensitivity analysis reveals that small changes in daily average revenue significantly affect monthly projections. Overall, the Monte Carlo approach provides a comprehensive risk assessment framework and demonstrates that the Teh Poci MSME is financially feasible under normal operating conditions.

References

An, L.-S., Lee, S., & Lee, Y.-J. (2025). Probabilistic fatigue parameter estimation in crack growth models using solely S-N data. Structure and Infrastructure Engineering. https://doi.org/10.1080/15732479.2025.2547347

Boone, E., & Ghanam, R. (2023). STATISTICAL INFERENCE ON FRACTIONAL ADVECTION-DIFFUSION TRANSPORT SYSTEMS. International Journal of Applied Mathematics, 36(1), 127–144. https://doi.org/10.12732/ijam.v36i1.11

Chorol, L., & Gupta, S. K. (2023). Hybrid analytic network process (ANP)-Entropy model, time series analysis for predicting nitrate and fluoride in groundwater and cumulative health risk assessment. Journal of Cleaner Production, 428. https://doi.org/10.1016/j.jclepro.2023.139316

de Amorim, F. R. D., Guimarães, C. C., Afonso, P., & Tobias, M. S. G. (2024). Forecasting Cost Risks of Corn and Soybean Crops through Monte Carlo Simulation. Applied Sciences (Switzerland), 14(17). https://doi.org/10.3390/app14178030

Du, J., & Fu, J. (2025). A multi-scale self-attention method with uncertainty quantification for probabilistic remaining useful life prediction of rotating machinery. Engineering Research Express, 7(3). https://doi.org/10.1088/2631-8695/adeeea

Edlinger, M., Van Smeden, M., Alber, H. F., Wanitschek, M., & van Calster, B. (2022). Risk prediction models for discrete ordinal outcomes: Calibration and the impact of the proportional odds assumption. Statistics in Medicine, 41(8), 1334–1360. https://doi.org/10.1002/sim.9281

Ghezal, A., & Alzeley, O. (2024). Probabilistic properties and estimation methods for periodic threshold autoregressive stochastic volatility. AIMS Mathematics, 9(5), 11805–11832. https://doi.org/10.3934/math.2024578

Gupta, M., Dorn, E., Nguyen, L., & McFarlan, A. (2025). Techno-economic evaluation of pulp and paper mill derived biochar, liquid and gaseous biofuel precursors: A British Columbia case study. Biomass and Bioenergy, 195. https://doi.org/10.1016/j.biombioe.2025.107677

Janicki, T. D., Kennelly, T. R., Leonard, J., Roberts, C., Rao, R. R., & Rodgers, T. M. (2025). On-lattice kinetic Monte Carlo approaches for modeling molecular anisotropy in resveratrol crystallization. Modelling and Simulation in Materials Science and Engineering, 33(5). https://doi.org/10.1088/1361-651X/ade176

Liu, M., Li, C., Zhang, Y., Yang, M., Cui, X., Li, B., Gao, T., Wang, D., & An, Q. (2023). Heat Transfer Mechanism and Convective Heat Transfer Coefficient Model of Cryogenic Air Minimum Quantity Lubrication Grinding Titanium Alloy; Jixie Gongcheng Xuebao/Journal of Mechanical Engineering, 59(23), 343–357. https://doi.org/10.3901/JME.2023.23.343

Ly, S., Xie, J., Franz-Erich Wolter, F.-E., Nguyen, H. D., & Weng, Y. (2023). T-shape data and probabilistic remaining useful life prediction for Li-ion batteries using multiple non-crossing quantile long short-term memory. Applied Energy, 349. https://doi.org/10.1016/j.apenergy.2023.121355

Roy, A., Chakraborty, S., & Adhikari, S. (2023). Reliability Analysis of Structures by Active Learning Enhanced Sparse Bayesian Regression. Journal of Engineering Mechanics, 149(5). https://doi.org/10.1061/JENMDT.EMENG-6964

Sun, H., Li, X., Duan, Y., & Zhang, N. (2023). Benefit sharing model of hydropower development based on input perspective: a case study of Xiluodu project in China. Frontiers in Sustainable Food Systems, 7. https://doi.org/10.3389/fsufs.2023.1174602

Yudistira, I. G. A. A., Nariswari, R., Arifin, S., Abdillah, A. A., Prasetyo, P. W., & Susyanto, N. (2024). Program Evaluation and Review Technique (PERT) Analysis to Predict Completion Time and Project Risk Using Discrete Event System Simulation Method. CommIT Journal, 18(1), 67–76. https://doi.org/10.21512/commit.v18i1.8495

Zhai, S., Du, G., Peng, T., Wang, Y., & Shang, Z. (2025). Probability analysis of vertical drainage improvement for soft soil settlement prediction via a Bayesian back analysis framework and the simplified Hypothesis B method. Journal of Intelligent Construction, 3(1). https://doi.org/10.26599/JIC.2025.9180077

Downloads

Published

2026-01-20

How to Cite

Bintang, B., Alya, N., Nisrina, H. Z., Ramadhan, R. S., & Fachrezy, G. (2026). Simulasi Monte Carlo dalam Estimasi Distribusi Pendapatan dan Evaluasi Kelayakan Finansial UMKM Teh Poci. Jurnal Teknik Industri Terintegrasi (JUTIN), 9(1), 1173–1179. https://doi.org/10.31004/jutin.v9i1.55892

Issue

Section

Articles of Research

Similar Articles

<< < 22 23 24 25 26 27 28 29 30 31 > >> 

You may also start an advanced similarity search for this article.