Simulasi Prediksi Penjualan Harian Menggunakan Metode Monte Carlo pada Usaha Roti Skala UMKM

Authors

  • Rika Romatona Universitas Al – Azhar, Medan, Sumatera Utara
  • Sabikah Nur Naylah Universitas Al – Azhar, Medan, Sumatera Utara
  • Baitul Maharani Lubis Universitas Al – Azhar, Medan, Sumatera Utara
  • Tika Gajah Universitas Al – Azhar, Medan, Sumatera Utara
  • Yuhani Yuhani Universitas Al – Azhar, Medan, Sumatera Utara
  • Bidara Jelita Maha Universitas Al – Azhar, Medan, Sumatera Utara
  • Erza Arkan zharif Universitas Al-Azhar Medan, Sumatera Utara

DOI:

https://doi.org/10.31004/jutin.v9i1.55835

Keywords:

Monte Carlo Simulation, Sales Prediction, Micro and Small Enterprises, Production Planning, Risk Analysis

Abstract

This study aims to apply the Monte Carlo simulation method to predict daily sales in a small-scale bakery enterprise to support risk-based production planning. The data used consisted of historical daily sales records analyzed to obtain statistical parameters, including mean and standard deviation. The results indicate that daily demand follows a normal distribution with an average of 151.73 units. A Monte Carlo simulation with 10,000 iterations was conducted to estimate the distribution of daily profit and associated risk levels. The findings show an average daily profit of IDR 199,029 with a 95% Value at Risk (VaR) of IDR 99,952. Furthermore, a positive correlation of 0.629 was identified between demand and profit. These results demonstrate that the Monte Carlo method is effective in modeling demand uncertainty and supporting more optimal and efficient production decision-making in micro and small enterprises.

References

Bouziane, S. E., Arab, S., Mohamed Khadir, M. T., & Sabri, S. (2025). Uncertainty-aware energy forecasting and environmental impact simulation using Monte Carlo and deep learning. Journal of Simulation. https://doi.org/10.1080/17477778.2025.2574719

Brilon, W., Wu, N., & Koenig, R. (2023). Delays and Queue Lengths at Traffic Signals With Two Greens in One Cycle. Transportation Research Record, 2677(2), 828–838. https://doi.org/10.1177/03611981221108981

Epicoco, N., & Massaro, A. (2025). A dynamic approach to predict systems requirements for continuous improvement. Computers and Industrial Engineering, 208. https://doi.org/10.1016/j.cie.2025.111415

Fenneteau, B., Deck, O., Mehdizadeh, R., & Laigle, F. (2025). Improved Squeezing Prediction of Deep Tunnels Within Highly Fractured Rock Mass: Update of the Hoek & Marinos Curve Under Uncertainties. Rock Mechanics and Rock Engineering, 58(8), 8557–8574. https://doi.org/10.1007/s00603-025-04574-w

Fierce, L., Yao, Y., Easter, R., Ma, P.-L., Sun, J., Wan, H., & Zhang, K. (2024). Quantifying structural errors in cloud condensation nuclei activity from reduced representation of aerosol size distributions. Journal of Aerosol Science, 181. https://doi.org/10.1016/j.jaerosci.2024.106388

Ghezal, A., & Alzeley, O. (2024). Probabilistic properties and estimation methods for periodic threshold autoregressive stochastic volatility. AIMS Mathematics, 9(5), 11805–11832. https://doi.org/10.3934/math.2024578

Huang, M., Wu, J., Wang, Y., Zhong, J., Guan, K., & Yu, B. (2026). A probabilistic creep damage model for studying the dispersion of small punch creep test and uniaxial tensile creep test. International Journal of Pressure Vessels and Piping, 222. https://doi.org/10.1016/j.ijpvp.2026.105764

Khan, M. S., Ali, A., Suhail, M., & Kibria, B. M. G. (2025). On some two parameter estimators for the linear regression models with correlated predictors: simulation and application. Communications in Statistics: Simulation and Computation, 54(10), 3933–3947. https://doi.org/10.1080/03610918.2024.2369809

Li, J., Wang, Y., Fu, Y., & Chen, Y. (2025). Ecological risk transmission network and its response characteristic in heavy metal-contaminated soil ecosystem under different scenarios. Environmental Pollution, 385. https://doi.org/10.1016/j.envpol.2025.127083

Li, K.-Q., Yin, Z.-Y., & Liu, Y. (2026). AGFNN: A smart platform for uncertainty-aware prediction of freezing time in artificial ground freezing. Tunnelling and Underground Space Technology, 170. https://doi.org/10.1016/j.tust.2025.107331

Liu, Y., Jiang, Y., Nasar, N., Bajón Fernández, Y., Longhurst, P., Guo, W., Lei, M., & Bortone, I. (2026). Improving ADM1 predictions via Bayesian analysis for continuous anaerobic digestion. Journal of Environmental Management, 398. https://doi.org/10.1016/j.jenvman.2025.128537

Ma, Y., Qu, D., & Pyrozhenko, M. (2026). Bio-RegNet: A Meta-Homeostatic Bayesian Neural Network Framework Integrating Treg-Inspired Immunoregulation and Autophagic Optimization for Adaptive Community Detection and Stable Intelligence. Biomimetics, 11(1). https://doi.org/10.3390/biomimetics11010048

Rajagopal, S., Hmar, R. V, Mookherjee, D., Ghatak, A., Shanbhag, A. P., Katagihallimath, N., Venkatraman, J., Ks, R., & Datta, S. (2022). Validated in Silico Population Model of Escherichia coli. ACS Synthetic Biology, 11(8), 2672–2684. https://doi.org/10.1021/acssynbio.2c00097

Schilling, F., Beesigamukama, D., & Tanga, C. M. (2026). Reliability of approaches for measuring soil organic carbon and implications for results-based payments for smallholder carbon farming. Journal of Environmental Management, 398. https://doi.org/10.1016/j.jenvman.2026.128562

Špetlík, M., Březina, J., & Laloy, E. (2024). Deep learning surrogate for predicting hydraulic conductivity tensors from stochastic discrete fracture-matrix models. Computational Geosciences, 28(6), 1425–1440. https://doi.org/10.1007/s10596-024-10324-8

Taneja, S. B., Jaiswal, S., Bisht, S., Jindal, V., & Bedi, P. (2025). MOP-N: A Hybrid AI Model for Automated Deployment of Guns in Dynamic Wargaming Scenario. Defence Science Journal, 75(2), 179–187. https://doi.org/10.14429/dsj.20246

Wu, H., Yang, Y., & Li, W. (2025). Dynamic prediction of the land-use carbon balance in urban agglomerations under the two-way effects of climate and socioeconomic interactions. Sustainable Cities and Society, 130. https://doi.org/10.1016/j.scs.2025.106555

Zhang, N., Xu, S., Li, X., Yang, M., Liu, X., & Chang, Y. (2026). A data-efficient fragility assessment methodology for deepwater drilling risers under combined wave and current loads via multi-objective genetic optimization. Ocean Engineering, 343. https://doi.org/10.1016/j.oceaneng.2025.123356

Zhang, X., Lei, X., Liu, Y., Li, X., & Yang, Z. (2025). A Method for Quantifying Frequency Regulation Capacity Requirements Based on Credible Prediction of Fluctuation Extremum in the Dispatch Period. Zhongguo Dianji Gongcheng Xuebao/Proceedings of the Chinese Society of Electrical Engineering, 45(21), 8431–8444. https://doi.org/10.13334/j.0258-8013.pcsee.240898

Zheng, X., CRESSIE, N., Clarke, D. A., McGeoch, M. A., & Zammit-Mangion, A. (2025). Spatial-statistical downscaling with uncertainty quantification in biodiversity modelling. Methods in Ecology and Evolution, 16(4), 837–853. https://doi.org/10.1111/2041-210X.14505

Downloads

Published

2026-01-20

How to Cite

Romatona, R., Naylah, S. N., Lubis, B. M., Gajah, T., Yuhani, Y., Maha, B. J., & zharif, E. A. (2026). Simulasi Prediksi Penjualan Harian Menggunakan Metode Monte Carlo pada Usaha Roti Skala UMKM. Jurnal Teknik Industri Terintegrasi (JUTIN), 9(1), 1148–1155. https://doi.org/10.31004/jutin.v9i1.55835

Issue

Section

Articles of Research

Similar Articles

<< < 31 32 33 34 35 36 

You may also start an advanced similarity search for this article.

Most read articles by the same author(s)