Forecasting Fuel Consumption Kapal X Menggunakan Metode Sarima Di Penajam Supply Base (PSB) Pertamina Hulu Kalimantan Timur

Authors

  • Wahyu Ardana Sekolah Tinggi Teknologi Migas
  • Irma Andrianti Sekolah Tinggi Teknologi Migas

DOI:

https://doi.org/10.31004/jutin.v8i4.38468

Keywords:

Forecasting, Fuel, SARIMA, Ship X, Penajam Supply Base(PSB)

Abstract

The energy industry faces major challenges in fuel inventory management due to price and demand fluctuations. PT Pertamina Hulu Kalimantan Timur (PHKT) faces this issue in the operation of Ship X, the crucial transportation between Balikpapan and Penajam Supply Base (PSB). Uncertainty in fuel demand can disrupt worker mobility and increase operational costs due to the high frequency of deliveries. Therefore, forecasting fuel consumption is important for efficiency and smooth operation. The purpose of this research is to forecast the amount of fuel that will be used by Ship X. The method used is a quantitative approach by utilizing secondary data on fuel consumption for the period January to September 2024 from PSB PHKT. In forecasting efforts, the Seasonal Autoregressive Integrated Moving Average (SARIMA) (1,1,0)(0,1,1)6 model is used. The selection of this model is based on parameter significance and fulfillment of the white noise residual assumption after going through diagnostic tests. The results of the study provide a prediction of the fuel usage of Ship X in week 40 of 1794.37 liters.

References

Aries, F. (2004). Peramalan Jumlah Produksi Granit Dengan Model Arima (Studi Kasus Pada PT. Karimun Granite, Tanjung Balai Karimun, Riau). Yogyakarta: Fakultas Matematikadanilmupengetahuanalam Universitas Islam Indonesia.

Arum, P. R., Fitriani, I., & Amri, S. (2024). Pemodelan Seasonal Autoregressive Integrated Moving Average (SARIMA) Untuk Meramalkan Volume Angkutan Barang Kereta Api Di Pulau Jawa Tahun 2021 . Journal Of Data Insights, 26-35.

Aziz, S., Sayuti, A., & Mustakim. (2017). Penerapan Metode ARIMA Untuk Peramalan Pengunjung Perpustakan UIN Suska Riau. Seminar Nasional Teknologi Informasi, Komunikasi Dan Industri (SNTIK), 186-193.

Bowerman, B. L., & O'Connel, R. T. (1983). Time Series And Forecasting .

Chopra, S., & Meindl, P. (2016). Supply Chain Management: Strategy, Planning, And Operation. Pearson.

Desvina, A. P., & Desmita, E. (2015). Penerapan Metode Box-Jenkins Dalam Meramalkan Indeks Harga Konsumen Di Kota Pekanbaru. Jurnal Sains Matematika Dan Statistika, 39-47.

Diebold, F. X. (2006). Elements Of Forecasting. 5191 Natorp Boulervard Mason, OH 45040 USA: South-Western College Pub.

Fahrudin, R., & Sumitra, I. D. (2020). Peramalan Inflasi Menggunakan Metode Sarima Dan Exponential Smoothing. Majalah Ilmiah UNIKOM .

Fahrudin, R., & Sumitra, I. D. (2020). Peramalan Inflasi Menggunakan Metode Sarima Dan Exponential Smooting. Unkom.

Fahrudin, R., & Sumitra, I. D. (2020). Peramalan Inflasi Menggunakan Metode Sarima Dan Single Exponential Smoothing (Studi Kasus; Kota Bandung). Majalah Ilmiah UNIKOM.

Hillmer, S. C., & Wei, W. W. (1991). Time Series Analysis: Univariate And Multivariate Methods. Journal Of The , 86(413),245.

Kolker, A. (2011). Forecasting Time Series. Healthcare Management Engineering: What. Milwaukee: Springer Science Business.

Makridakis, S. S., Wheelwright., & Mcgee. (1999). Metode Aplikasi Dan Peramalan. Edisi 2. Jilid I. Jakarta: Binarupa Aksara.

Maliangkay, N. C. (2018). Penggunaan Metode ARIMA, Variasi Kalender, Dan Interventensi Untuk Meramalkan Inflasi Kabupaten Sidoarjo. Surabaya: Faculty Of Mathematics, Computations, And Data Sciences Sepuluh Nopember Institute Of Technology .

Munarsih, E. (2011). Penerapan Model Arima-Neural Network Hybrid Untuk Peramalan Time Series; The Implementation Of Arima-Neural Network Hybrid Model For Time Series Forecasting.

Nany Salwa, N. T. (2018). Peramalan Harga Bitcoin Menggunakan Metode ARIMA. Journal Of Data Analysis, 21-31.

PSB PHKT. (2024). Log Activity Fuel .

Rosadi, D. (2016). Analisis Runtun Waktu Dan Aplikasinya Dengan R. Yogyakarta: Gadjah Mada University Press.

Santoso, R. J. (2020). Penggunaan Metode ARIMA Dengan Aplikasi MINITAB Untuk Peramalan Data Pendapatan Perusahaan Pecah Batu Putra Mandiri. Semarang: UIN Walisongo Semarang.

Tantika, H. N., Supriadi, N., & Anggraini, D. (2018). Metode Seasonal ARIMA Untuk Meramalkan Produksi Kopi Dengan Indikator Curah Hujan Menggunakan Aplikasi R Di Kabupaten Lampung Barat. Matematika, 49-58.

Wei, W. W. (1990). Time Series Analysis: Univariate And Multivariate Methods. USA: Addison-Wesley Publishing Company.

Zulhamidi, Z., & Hardianto, R. (2017). Peramalan Penjualan Teh Hijau Dengan Metode Arima (Studi Kasus Pada PT. Mk). PASTI, 231-244.

Downloads

Published

2025-10-20

How to Cite

Ardana, W., & Andrianti, I. (2025). Forecasting Fuel Consumption Kapal X Menggunakan Metode Sarima Di Penajam Supply Base (PSB) Pertamina Hulu Kalimantan Timur. Jurnal Teknik Industri Terintegrasi (JUTIN), 8(4), 4651–4661. https://doi.org/10.31004/jutin.v8i4.38468

Issue

Section

Articles of Research

Similar Articles

1 2 3 4 5 > >> 

You may also start an advanced similarity search for this article.