Perancangan Ulang Poros, Pasak, Kopling, dan Bearing Pompa Sentrifugal 5,5 kW/1450 RPM Berbasis Keandalan dan Validasi
DOI:
https://doi.org/10.31004/jutin.v8i4.50856Keywords:
Centrifugal pump, Shaft key coupling bearing, Stress concentration, L10 life, Reliability based designAbstract
This paper addresses a common gap in pump transmission design that relies on “allowable stress + safety factor.” This paper redesign a complete shaft key coupling bearing train of a 5.5 kW/1450 rpm centrifugal pump using a reliability based framework. A field case uses nameplate data and dimensional measurements. Methods include ASME/DE von Mises formulation for combined bending torsion, stress concentration factors for keyseat/fillet, consistent torque path sizing of key and flange coupling, and bearing L10 life per ISO 281. All calculations use SI units with ±5–10% uncertainty propagation. Results show an S40C shaft ds≈33.3 mm, a 10×8×15 mm key, a flange coupling passing shear/crushing checks, and an angular contact bearing meeting a 20–40 kh life target, sensitivity highlights Kt and equivalent bearing load as dominant drivers. This paper recommend as a design for reliability guide for maintenance friendly pump trains in SME/utility settings, complemented by targeted vibration tests.References
Ahmad, M. S., Tiwari, R., & Mandawat, T. (2022). Multi-Objective Robust Optimization of Deep Groove Ball Bearings Considering Manufacturing Tolerances Based on Fatigue and Wear Considerations. Journal of Tribology, 144(2), 22301. https://doi.org/10.1115/1.4050883
Bloch, H. P., & Perez, R. X. (2025). Industrial Drive Couplings. In Process Machinery Handbook (pp. 327–343). https://doi.org/https://doi.org/10.1002/9781394214570.ch16
Chouikhi, H., Mahdi, M., & Saber, M. (2024). Loading Conditions Effects on Fatigue Life of Notched Rods Using Four-Point Bending Test. Experimental Techniques, 48(6), 1039–1052. https://doi.org/10.1007/s40799-024-00726-9
Dassisti, M., Madani, K., & Panetto, H. (Eds.). (2025). Innovative Intelligent Industrial Production and Logistics: 5th International Conference, IN4PL 2024, Porto, Portugal, November 21–22, 2024, Proceedings. Springer.
Hua, M., Cao, C., Cai, Y., Ge, J., Zhong, F., & Mao, J. (2023). Failure analysis and structural fatigue resistance design of multistage centrifugal pump shaft. Engineering Failure Analysis, 153, 107545. https://doi.org/https://doi.org/10.1016/j.engfailanal.2023.107545
Kade, A., Supriyatman, S., Kamaruddin, A., & Novia, N. (2024). Exploring Technology-Driven Simulations in Practical Physics: Insights into Mechanical Measurements Concept. ASEAN Journal of Science and Engineering.
Ketmuang, Y., Boonmag, V., & Phukaoluan, A. (2024). Fracture Analysis of S45C Medium Carbon Steel for the Van Front Drive Shaft. https://doi.org/10.18178/ijmerr.13.1.35-43
Kumar, N., & Satapathy, R. K. (2023). Bearings in Aerospace, Application, Distress, and Life: A Review. Journal of Failure Analysis and Prevention, 23(3), 915–947. https://doi.org/10.1007/s11668-023-01658-z
Li, C., Li, J., Wang, H., Wang, W., Zou, L., Liu, Y., & Hu, M. (2025). Inter-shaft bearing fault diagnosis based on TIEgram and autocorrelation. Chinese Journal of Mechanical Engineering, 100045. https://doi.org/https://doi.org/10.1016/j.cjme.2025.100045
Libera, M. (2024). Simplified Method for Estimating a Dynamic Load Rating for Rolling Bearings. Tribologia, 2, 65–74. https://doi.org/10.5604/01.3001.0054.8429
Marscher, W. D. (2023). Centrifugal Pump Monitoring, Troubleshooting and Diagnosis Using Vibration Technologies. In Condition Monitoring, Troubleshooting and Reliability in Rotating Machinery (pp. 15–76). https://doi.org/https://doi.org/10.1002/9781119631620.ch2
Mylsamy, S., & Subramanyan, N. (2023). Fatigue failure prediction through factor of safety and stress concentration in a malfunctioned AISI 4140 automotive crankshaft. Materials Research Express, 10(9), 96522. https://doi.org/10.1088/2053-1591/acf7c8
Narsakka, J. (2022). Coupling design and analysis for high-speed drivetrain supported by three active magnetic bearings [LUT University]. https://lutpub.lut.fi/bitstream/handle/10024/163935/Diplomityö-Juuso-Narsakka-final.pdf
Noronha, D. J., Sharma, S., Prabhu Parkala, R., Shankar, G., Kumar, N., & Doddapaneni, S. (2024). Deep Rolling Techniques: A Comprehensive Review of Process Parameters and Impacts on the Material Properties of Commercial Steels. Metals, 14(6), 667. https://doi.org/10.3390/met14060667
Pan, X., Liu, J., Li, Y., Hua, F., Chen, X., & Zhang, Z. (2023). Finite element analysis of stress field and fatigue life prediction of notched specimens under multiaxial load. International Journal of Structural Integrity, 14(5), 663–680. https://doi.org/10.1108/IJSI-05-2023-0041
Patrizio, C., Naldi, L., Harmon, M., & Harper, P. (2025). A Novel Approach for Diagnostic of Aeroderivative GT Roller Bearings Through Ultrasonic Reflectometry Combined With Acoustic Emissions. https://doi.org/10.1115/GT2025-152401
Piotrowski, J. (2025). Shaft misalignment of rotating machinery. In Harris’ Shock and Vibration Handbook. https://ndl.ethernet.edu.et/bitstream/123456789/25124/1/309.pdf#page=1296
Ranjan, G., Narsakka, J., Choudhury, T., Nevaranta, N., & Sopanen, J. (2025). Method for evaluating stresses and fatigue life of a coupled multi-shaft rotor supported by active magnetic bearings in dropdown events. Nonlinear Dynamics, 113(14), 17705–17724. https://doi.org/10.1007/s11071-025-11109-z
Sauvage, P., Terwey, T., Lehmann, B., & Jacobs, G. (2025). Improved Calculation of Dynamic Load Capacity for Cylindrical Roller Thrust Bearings: Numerical Update of the Lifetime Reduction Factor η for Bearings with Small and Medium Spin-to-Roll Ratios. Lubricants, 13(2), 65. https://doi.org/10.3390/lubricants13020065
Schneider, H. (2023). Rotor balancing. In Fundamentals for Systematic Processes. Springer.
Sularso, I., & Suga, K. (2006). Dasar perencanaan dan pemilihan elemen mesin (11th ed.). PT Pradnya Paramita.
Sun, Hui, Hu, Kang, Si, Qiaorui, Lan, Qingqi, & Yuan, Shouqi. (2025). Review of fault modes and failure diagnosis methods for magnetic-driving pump. Structural Health Monitoring, 14759217251316620. https://doi.org/10.1177/14759217251316621
Tuninetti, V., Martínez, D., Narayan, S., Menacer, B., & Oñate, A. (2024). Design Optimization of a Marine Propeller Shaft for Enhanced Fatigue Life: An Integrated Computational Approach. Journal of Marine Science and Engineering, 12(12), 2227. https://doi.org/10.3390/jmse12122227
Wang, X., Jin, H., Fu, Z., Xiong, J., Zhang, B., Shi, H., & Han, H. (2024). A novel hybrid strategy for damage detection of wind turbine yaw bearing. Structural Health Monitoring, 0(0), 14759217241295334. https://doi.org/10.1177/14759217241295334
Wang, Y., & Luo, J. (2025). Analysis of the impact of shafting angle misalignment on the vibration characteristics of centrifugal pumps. Physics of Fluids, 37(5), 52111. https://doi.org/10.1063/5.0268921
Yang, X., Lei, J., Bi, Y., Yu, M., & Yi, Y. (2025). Torsional fatigue failure study and lightweight design of hybrid engine crankshaft based on multidimensional analysis and experimental-simulation synergy. Engineering Failure Analysis, 182, 110145. https://doi.org/https://doi.org/10.1016/j.engfailanal.2025.110145
Zhu, X., Dong, Z., Zhang, Y., & Cheng, Z. (2021). Fatigue Life Prediction of Machined Specimens with the Consideration of Surface Roughness. Materials, 14(18), 5420. https://doi.org/10.3390/ma14185420
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Rezki Meilani, Susilo Handoko

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

