Pengembangan Katalis Water-Gas Shift: Perspektif dari Sistem Medium Temperature Shift (MTS)

Authors

  • Salma Liska Universitas Riau
  • Gita Nur Sajida Politeknik Negeri Bandung
  • Lisa Legawati Universitas Riau
  • Suhendri Suhendri Universitas Riau
  • Zuqni Meldha Universitas Riau
  • Yogi Yolanda Universitas Riau
  • Yola Bertilsya Hendri Universitas Riau
  • Marcela Anandita Rusmana Universitas Katolik Parahyangan

DOI:

https://doi.org/10.31004/jutin.v8i3.48117

Keywords:

water gas shift, katalis Cu, medium temperature shift (MTS)

Abstract

The water-gas shift (WGS) reaction is a crucial process for increasing hydrogen (H₂) production by minimizing carbon monoxide (CO) content. It is widely applied in the petrochemical industry to reduce CO levels in syngas produced from hydrocarbon reforming. Conventionally, this reaction is conducted in two stages: high-temperature shift (HTS) and low-temperature shift (LTS). However, this approach presents both technical and economic limitations. To address these issues, catalysts capable of operating optimally at intermediate temperatures—referred to as medium-temperature shift (MTS)—have been developed. The scope of discussion in this article consists of catalyst development challenges such as sintering, deactivation, and side reactions. This review is intended to serve as a reference for the development of efficient WGS catalysts under MTS conditions, along with modification strategies aimed at enhancing their performance based on current research findings.

References

Abdulrasheed, A., Jalil, A. A., Gambo, Y., Ibrahim, M., Hambali, H. U., & Shahul Hamid, M. Y. (2019). A review on catalyst development for dry reforming of methane to syngas: Recent advances. Renewable and Sustainable Energy Reviews, 108(11), 175–193. https://doi.org/10.1016/j.rser.2019.03.054

Baraj, E., Ciahotný, K., & Hlinčík, T. (2021). The water gas shift reaction: Catalysts and reaction mechanism. Fuel, 288(June 2020). https://doi.org/10.1016/j.fuel.2020.119817

Demirel, E., & Ayas, N. (2017). Thermodynamic Modeling of the Water-Gas Shift Reaction in Supercritical Water for Hydrogen Production 1. Theoretical Foundations of Chemical Engineering, 51(1), 76–87. https://doi.org/10.1134/S0040579517010067

Ebrahimi, P., Kumar, A., & Khraisheh, M. (2020). A review of recent advances in water-gas shift catalysis for hydrogen production. Emergent Materials, 3(6), 881–917. https://doi.org/10.1007/s42247-020-00116-y

Fuentes, E. M., Cadete Santos Aires, F. J., Prakash, S., Da Costa Faro, A., De Freitas Silva, T., Assaf, J. M., & Rangel, M. D. C. (2014). The effect of metal content on nickel-based catalysts obtained from hydrotalcites for WGSR in one step. International Journal of Hydrogen Energy, 39(2), 815–828. https://doi.org/10.1016/j.ijhydene.2013.10.114

Jensen, C., & Duyar, M. S. (2021). Thermodynamic Analysis of Dry Reforming of Methane for Valorization of Landfill Gas and Natural Gas. Energy Technology, 9(7), 1–12. https://doi.org/10.1002/ente.202100106

Lee, D. W., Lee, M. S., Lee, J. Y., Kim, S., Eom, H. J., Moon, D. J., & Lee, K. Y. (2013). The review of Cr-free Fe-based catalysts for high-temperature water-gas shift reactions. Catalysis Today, 210, 2–9. https://doi.org/10.1016/j.cattod.2012.12.012

Liska, S., Devianto, H., Sajida, G. N., Restiawaty, E., Miyamoto, M., Uemiya, S., Nishiyama, N., & Budhi, Y. W. (2024). Strategy to Prevent Reverse Reactions in Water Gas Shift (WGS) Through Cu/ZnO Catalyst with MFI Type of Zeolite Support. Evergreen, 11(4), 3299–3306.

Liska, S., Shalihah, R. K., Restiawaty, E., Devianto, H., Miyamoto, M., Uemiya, S., Nishiyama, N., Budhi, Y. W., & Chan, S. H. (2024). Catalytic enhancement of water gas shift reaction with Cu/ZnO/ZSM-5: Overcoming challenges of CO2 and H2 rich feeds. International Journal of Hydrogen Energy, 92(August), 401–408. https://doi.org/10.1016/j.ijhydene.2024.10.093

Lucarelli, C., Molinari, C., Faure, R., Fornasari, G., Gary, D., Schiaroli, N., & Vaccari, A. (2018). Novel Cu-Zn-Al catalysts obtained from hydrotalcite-type precursors for middle-temperature water-gas shift applications. Applied Clay Science, 155(12), 103–110. https://doi.org/10.1016/j.clay.2017.12.022

Mokhatab, S., & Poe, W. (2012). Handbook of Natural Gas Transmission and Processing. Handbook of Natural Gas Transmission and Processing. https://doi.org/10.1016/C2010-0-66115-3

Pal, D. B., Chand, R., Upadhyay, S. N., & Mishra, P. K. (2018). Performance of water gas shift reaction catalysts: A review. Renewable and Sustainable Energy Reviews, 93(February 2017), 549–565. https://doi.org/10.1016/j.rser.2018.05.003

Saeidi, S., Fazlollahi, F., Najari, S., Iranshahi, D., Klemeš, J. J., & Baxter, L. L. (2017). Hydrogen production: Perspectives, separation with special emphasis on kinetics of WGS reaction: A state-of-the-art review. Journal of Industrial and Engineering Chemistry, 49, 1–25. https://doi.org/10.1016/J.JIEC.2016.12.003

Sajida, G. N., Liska, S., Saputera, W. H., Winoto, H. P., & Budhi, Y. W. (2024). Study of the water gas shift reaction thermodynamic, kinetic, and reactor modelling. AIP Conference Proceedings, 3215(1). https://doi.org/10.1063/5.0236602

Smith R J, B., Loganathan, M., & Shantha, M. S. (2010). A review of the water gas shift reaction kinetics. International Journal of Chemical Reactor Engineering, 8. https://doi.org/10.2202/1542-6580.2238

Suhartanto, T., York, A. P. E., Hanif, A., Al-Megren, H., & Green, M. L. H. (2001). Potential utilisation of Indonesia’s natuna natural gas field via methane dry reforming to synthesis gas. Catalysis Letters, 71(1–2), 49–54. https://doi.org/10.1023/A:1016600223749

Wang, C., Liu, C., Fu, W., Bao, Z., Zhang, J., Ding, W., Chou, K., & Li, Q. (2016). The water-gas shift reaction for hydrogen production from coke oven gas over Cu/ZnO/Al2O3 catalyst. Catalysis Today, 263, 46–51. https://doi.org/10.1016/j.cattod.2015.09.044

Downloads

Published

2025-07-15

How to Cite

Liska, S., Sajida, G. N., Legawati, L., Suhendri, S., Meldha, Z., Yolanda, Y., … Rusmana, M. A. (2025). Pengembangan Katalis Water-Gas Shift: Perspektif dari Sistem Medium Temperature Shift (MTS). Jurnal Teknik Industri Terintegrasi (JUTIN), 8(3), 3519–3524. https://doi.org/10.31004/jutin.v8i3.48117

Issue

Section

Articles of Research

Similar Articles

1 2 3 4 5 6 7 > >> 

You may also start an advanced similarity search for this article.

Most read articles by the same author(s)