Artikel Review: Teknologi Zeolit untuk Penangkapan Karbon (Carbon Capture): Karakteristik, Modifikasi dan Tantangan Operasional
DOI:
https://doi.org/10.31004/jutin.v9i1.53291Keywords:
Zeolite, carbon capture, amine, adsorption, selectivityAbstract
Zeolites are promising adsorbents for CO₂ capture due to their high surface area, thermal stability, and cost-effectiveness. Their performance can be enhanced through chemical modifications such as amine impregnation, cation exchange, and hydrophobic surface grafting, enabling improved selectivity and resistance to moisture. However, operational challenges remain, including water competition, regeneration energy demand, and cyclic stability under industrial conditions. Strategies like guard beds, hydrophobic zeolites, and hybrid systems are being developed to overcome these limitations. Zeolite-based adsorption offers a sustainable pathway for reducing CO₂ emissions and advancing low-carbon technologies.References
Abd, A. A., Naji, S. Z., Hashim, A. S., & Othman, M. R. (2020). Carbon dioxide removal through physical adsorption using carbonaceous and non-carbonaceous adsorbents: A review. Journal of Environmental Chemical Engineering, 8(5), 104142. https://doi.org/https://doi.org/10.1016/j.jece.2020.104142
Abreu, N. J., Valdés, H., Zaror, C. A., & Azzolina-Jury, F. (2025). Modification of Natural and Synthetic Zeolites for CO₂ Capture. Molecules, 30(10), 2143. https://doi.org/10.3390/molecules30102143
Akhtar, F., Liu, Q., Hedin, N., & Bergström, L. (2012). Strong and binder free structured zeolite sorbents with very high CO2-over-N2 selectivities and high capacities to adsorb CO2 rapidly. Energy Environ. Sci., 5(6), 7664–7673. https://doi.org/10.1039/C2EE21153J
Amornsin, P., Chaisuwan, T., & Wongsakulphasatch, S. (2025). Investigation of microwave-assisted regeneration of zeolite 13X for direct air CO₂ capture. Scientific Reports, 15, 2074. https://doi.org/10.1038/s41598-025-02074-z
Azmi, A. A., & Aziz, M. A. A. (2019). Mesoporous adsorbent for CO2 capture application under mild condition: A review. Journal of Environmental Chemical Engineering, 7(2), 103022.
Bahmanzadegan, F., Ghaemi, A., & Khosravi-Nikou, M. R. (2025). Ecofriendly novel hydrophobic core-shell zeolite@MOF composite for efficient CO₂ capture from humid postcombustion flue gases. Journal of Environmental Chemical Engineering, 13(1), 115672. https://doi.org/10.1016/j.jece.2025.115672
Chen, C., Li, Y., Zhang, Z., Qiu, J., & Chen, M. (2023). Desorption performance of commercial zeolites for temperature-swing adsorption-based CO₂ capture from simulated flue gas. Journal of Environmental Sciences, 133, 191-200. https://doi.org/10.1016/j.jes.2023.06.014
Cheung, O., & Hedin, N. (2014). Zeolites and related sorbents with narrow pores for CO 2 separation from flue gas. Rsc Advances, 4(28), 14480–14494.
de Oliveira, L. H., Rudke, A. P., Perez-Lopez, O. W., & Martins, L. (2023). Influence of regeneration conditions on cyclic CO₂ adsorption on NaA zeolite at high pressures. Separation and Purification Technology, 306, 122415. https://doi.org/10.1016/j.seppur.2022.122415
Derouane, E. G. (1986). Shape selectivity in catalysis by zeolites: The nest effect. Journal of Catalysis, 100(2), 541–544. https://doi.org/https://doi.org/10.1016/0021-9517(86)90127-2
Derouane, E. G. (1987). The energetics of sorption by molecular sieves: Surface curvature effects. Chemical Physics Letters, 142(3), 200–204. https://doi.org/https://doi.org/10.1016/0009-2614(87)80922-3
Derouane, E. G., André, J.-M., & Lucas, A. A. (1987). A simple van der waals model for molecule-curved surface interactions in molecular-sized microporous solids. Chemical Physics Letters, 137(4), 336–340. https://doi.org/https://doi.org/10.1016/0009-2614(87)80895-3
Erguvan, M., MacArtain, P., & Littlefield, A. A. (2024). Parametric Investigation of CO₂ Desorption of Zeolite 13X for Direct Air Capture. Carbon Capture Science & Technology, 10, 100001. https://doi.org/10.1016/j.ccst.2024.100001
Fu, D., Davis, M. E., & Deem, M. W. (2022). CO₂ Desorbs Water from K-MER Zeolite under Equilibrium Control. Journal of the American Chemical Society, 145(51), 28080-28088. https://doi.org/10.1021/jacs.3c10834
Goyal, N., Mitra, S., & Tiwari, S. (2025). Advances in hydrophobic physiadsorbents for CO₂ capture from humid flue gas: Recent breakthroughs and future perspectives. Separation and Purification Technology, 348, 132660. https://doi.org/10.1016/j.seppur.2025.132660
Huang, R., Richardson, T-M.J, Belancik, G., Jan, D., Hogan, J., & Knox, J. (2017) Zeolite Degradation: An Investigation of CO₂ Capacity Loss of 13X and Other Zeolites. ICES. 117.
Inglezakis, V. J., & Zorpas, A. A. (2012). Handbook of natural zeolites. Bentham Science Publishers.
Jacobs, J. H., Deguelle, J., Goetheer, E., & Abu-Zahra, M. R. M. (2023). The temperature dependent degradation of zeolites 4A, 13X and silica gels relevant to CO₂ adsorption. New Journal of Chemistry, 47, 5785-5794. https://doi.org/10.1039/D3NJ00093A
Jadhav, P. D., Chatti, R. V, Biniwale, R. B., Labhsetwar, N. K., Devotta, S., & Rayalu, S. S. (2007). Monoethanol Amine Modified Zeolite 13X for CO2 Adsorption at Different Temperatures. Energy & Fuels, 21(6), 3555–3559. https://doi.org/10.1021/ef070038y
Kelektsoglou, K. (2018). Carbon Capture and Storage: A Review of Mineral Storage of CO2 in Greece. Sustainability, 10(12). https://doi.org/10.3390/su10124400
Khan, S. A., Shahid, A., Ali, M., & Hussain, E. (2025). Advances in CO₂ Capture Materials: From Strategies to Applications—A Comprehensive Review. Carbon Neutrality, 4, 70063. https://doi.org/10.1002/cnl2.70063
Koytsoumpa, E. I., Bergins, C., & Kakaras, E. (2018). The CO2 economy: Review of CO2 capture and reuse technologies. The Journal of Supercritical Fluids, 132, 3–16.
Krishnamurthy, S., Rao, V. R., Guntuka, S., Sharratt, P., Haghpanah, R., Rajendran, A., Amanullah, M., Karimi, I. A., & Farooq, S. (2025). Simulation and Optimization of a Rotary Temperature Swing Adsorption Process for Postcombustion CO₂ Capture. Industrial & Engineering Chemistry Research, 64(22), 9561-9577. https://doi.org/10.1021/acs.iecr.4c04957
Kupgan, G., Abbott, L. J., Hart, K. E., & Colina, C. M. (2018). Modeling Amorphous Microporous Polymers for CO2 Capture and Separations. Chemical Reviews, 118(11), 5488–5538. https://doi.org/10.1021/acs.chemrev.7b00691
Lee, K.-M., Lim, Y.-H., Park, C.-J., & Jo, Y.-M. (2012). Adsorption of Low-Level CO2 Using Modified Zeolites and Activated Carbon. Industrial & Engineering Chemistry Research, 51(3), 1355–1363. https://doi.org/10.1021/ie2013532
Li, G., Xiao, P., Webley, P., Zhang, J., Singh, R., & Marshall, M. (2009). Competition of CO₂/H₂O in adsorption based CO₂ capture. Energy Procedia, 1(1), 1123-1130. https://doi.org/10.1016/j.egypro.2009.01.148
Liu, X., Li, J., Zhou, L., Huang, D., & Zhou, Y. (2005). Adsorption of CO2, CH4 and N2 on ordered mesoporous silica molecular sieve. Chemical Physics Letters, 415(4), 198–201. https://doi.org/https://doi.org/10.1016/j.cplett.2005.09.009
Moura, P. A. S., Bezerra, D. P., Vilarrasa-Garcia, E., Bastos-Neto, M., & Azevedo, D. C. S. (2016). Adsorption equilibria of CO2 and CH4 in cation-exchanged zeolites 13X. Adsorption, 22(1), 71–80. https://doi.org/10.1007/s10450-015-9738-9
Paltsev, S., Morris, J., Kheshgi, H., & Herzog, H. (2021). Hard-to-Abate Sectors: The role of industrial carbon capture and storage (CCS) in emission mitigation. Applied Energy, 300, 117322. https://doi.org/https://doi.org/10.1016/j.apenergy.2021.117322
Pardakhti, M., Jafari, T., Tobin, Z., Dutta, B., Moharreri, E., Shemshaki, N. S., Suib, S., & Srivastava, R. (2019). Trends in Solid Adsorbent Materials Development for CO2 Capture. ACS Applied Materials & Interfaces, 11(38), 34533–34559. https://doi.org/10.1021/acsami.9b08487
Perinu, C., Arstad, B., Bouzga, Aud. M., & Jens, K.-J. (2014). 13C and 15N NMR Characterization of Amine Reactivity and Solvent Effects in CO2 Capture. The Journal of Physical Chemistry B, 118(34), 10167–10174. https://doi.org/10.1021/jp503421x
Reddy, E. P., & Smirniotis, P. G. (2004). High-Temperature Sorbents for CO2 Made of Alkali Metals Doped on CaO Supports. The Journal of Physical Chemistry B, 108(23), 7794–7800. https://doi.org/10.1021/jp031245b
Ren, X., Qu, R., Liu, S., Zhao, H., Wu, W., Song, H., Zheng, C., Wu, X., & Gao, X. (2020). Synthesis of Zeolites from Coal Fly Ash for the Removal of Harmful Gaseous Pollutants: A Review. Aerosol and Air Quality Research, 20(5), 1127–1144. https://doi.org/10.4209/aaqr.2019.12.0651
Rochelle, G. T. (2009). Amine Scrubbing for CO2 Capture. Science, 325(5948), 1652–1654. https://doi.org/10.1126/science.1176731
Rumbo-Morales, J. Y., Ortiz-Torres, G., Sarmiento-Bustos, E., Hernández-Pérez, J. A., Brizuela-Mendoza, J. A., & López-López, A. (2025). Energy efficiency and productivity of a Pressure Swing Adsorption process for bioethanol purification. Chemical Engineering Research and Design, 211, 471-483. https://doi.org/10.1016/j.cherd.2024.07.011
Salvi, B. L., & Jindal, S. (2019). Recent developments and challenges ahead in carbon capture and sequestration technologies. SN Applied Sciences, 1(8), 885. https://doi.org/10.1007/s42452-019-0909-2
Santos, M. P. S., Grande, C. A., & Rodrigues, A. E. (2011). Pressure Swing Adsorption for Biogas Upgrading. Effect of Recycling Streams in Pressure Swing Adsorption Design. Industrial & Engineering Chemistry Research, 50(2), 974–985. https://doi.org/10.1021/ie100757u
Saxanana, P. F., Widodo, S., & Kusumawati, Y. (2024). CO₂ separation from flue gas using zeolite and carbon molecular sieve by indirect heated and cooled TSA process. Journal of Engineering and Technology, 15(3), 112-125.
Sayılgan, Ş. Ç. Mobedi, M., & S. Ülkü. Effect of regeneration temperature on adsorption equilibria and mass diffusivity of zeolite 13X-water pair. (2016). Journal of Chemical & Engineering Data, 61(4), 1234-1245.
Shen, M. S., Fisher, E. P., & Poston, J. A. (2021). Adsorption breakthrough and cycling stability of carbon dioxide on zeolites. Industrial & Engineering Chemistry Research, 60(41), 14786-14798.
Sprynskyy, M., Buszewski, B., Terzyk, A. P., & Namieśnik, J. (2006). Study of the selection mechanism of heavy metal (Pb2+, Cu2+, Ni2+, and Cd2+) adsorption on clinoptilolite. Journal of Colloid and Interface Science, 304(1), 21–28.
Susanti, Y., Maghfirah, A., Fajar, A.T.N, Mukti, R.R., & Kadja G.T.M. Hydrophobic HY zeolite with enhanced stability in hot liquid water. Catalysis Today, 425, 114956.
Tao, Z., Wang, D., Fan, W., & Huai, X. (2024). Development of zeolite adsorbents for CO₂ separation in post-combustion capture: From molecular mechanisms to process integration. Nature Communications Materials, 1, 23. https://doi.org/10.1038/s44296-024-00023-x
Wang, Y., & Yang, R. T. (2019). Chemical Liquid Deposition Modified 4A Zeolite as a Size-Selective Adsorbent for Methane Upgrading, CO2 Capture and Air Separation. ACS Sustainable Chemistry & Engineering, 7(3), 3301–3308. https://doi.org/10.1021/acssuschemeng.8b05339
Wei, Y.-M., Kang, J.-N., Liu, L.-C., Li, Q., Wang, P.-T., Hou, J.-J., Liang, Q.-M., Liao, H., Huang, S.-F., & Yu, B. (2021). A proposed global layout of carbon capture and storage in line with a 2 °C climate target. Nature Climate Change, 11(2), 112–118. https://doi.org/10.1038/s41558-020-00960-0
Whaieb, A. H., Dong, X., & Senftle, T. P. (2025). Tailoring zeolites for enhanced post-combustion CO₂ capture: A comprehensive review of synthesis strategies, modification techniques, and performance optimization. Carbon Capture Science & Technology, 14, 100074. https://doi.org/10.1016/j.ccst.2025.100074
Xuan, K., Liu, Y., Jiang, Y., Li, F., Luo, Y., & Liu, W. (2025). On CO₂ capture capacity and mechanisms for zeolite templated carbon in dry and humid conditions: A comprehensive experimental and theoretical investigation. Separation and Purification Technology, 352, 130677. https://doi.org/10.1016/j.seppur.2025.130677
Zha, X., Wu, Z., Dai, Q., Wang, X., Wang, C., Wu, Y., & Gong, M. (2024
Zhang, N., Liu, H., Sun, Y., Li, Z., & Wang, Y. (2025). Optimization of pressure swing adsorption in a three-layered bed for hydrogen purification using UTSA-16 metal-organic framework. Scientific Reports, 15, 7139. https://doi.org/10.1038/s41598-025-97139-4
Zhang, Q., Li, Z., Zhang, J., Zhang, S., Zhu, L., Yang, J., Zhang, X., & Deng, Y. (2007). Physicochemical Properties of Nitrile-Functionalized Ionic Liquids. The Journal of Physical Chemistry B, 111(11), 2864–2872. https://doi.org/10.1021/jp067327s
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2026 Hasrul Hasrul, Trisuciati Syahwardini, Abdul Rahman Wali, Purfaji Purfaji, Arya Wiranata, Ni Putu Vidya Primarista

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

