ANALISIS KINERJA SALURAN PENGALIHAN BANJIR PADA DAS SIKAMBING KOTA MEDAN

Authors

  • Fiqih Jul Fachri Institut Teknologi Bandung
  • Dhemi Harlan Institut Teknologi Bandung
  • Joko Nugroho Institut Teknologi Bandung
  • Ana N. Chaidar Institut Teknologi Bandung

DOI:

https://doi.org/10.31004/jrpp.v8i1.41368

Keywords:

Pengendalian Banjir, Saluran Pengalihan Banjir, Permodelan HEC-RAS 2D

Abstract

Dalam rentang periode 2015 hingga 2024, Kota Medan mengalami 14 kejadian banjir yang menunjukkan rata-rata kejadian banjir setiap tahunnya. Salah satu penyebab utama dari kejadian banjir ini adalah meluapnya aliran Sungai Sikambing selama periode hujan tinggi. Untuk mengatasi permasalahan ini, dibangun saluran pengalihan di area hulu Sungai Sikambing dengan tujuan mengalihkan debit banjir sebesar 30 m³/dtk ke Sungai Belawan. Untuk menilai kinerja saluran pengalihan banjir, penelitian ini ditingkatkan dari hasil perencanaan sebelumnya dengan analisis hidrologi dan permodelan hidrodinamik menggunakan HEC-RAS 2D, yang diterapkan pada kondisi debit desain periode ulang 25, 50, dan 100 tahun. Hasil penelitian menunjukkan bahwa kinerja saluran pengalihan mampu mereduksi debit banjir rata-rata sebesar 21,79%, reduksi luas genangan rata-rata sebesar 48,75%, reduksi waktu kejadian banjir rata-rata sebesar 35,56% dan penurunan kedalaman banjir rata-rata hingga 0,21 m. Meskipun saluran pengalihan ini efektif dalam mereduksi debit banjir pada semua kondisi, terdapat selisih sebesar 4,75% dari rencana reduksi debit banjir yang dilakukan sebelumnya. Penelitian ini diharapkan dapat mengevaluasi kinerja saluran pengalihan untuk pengendalian banjir di DAS Sikambing Kota Medan.

References

Abadi, A. W., Astuti, B. I. D., Kurniasari, Siahaan, Y. V. O., Jamil, U. A., Widyaningrum, W., Jatti, A. P., Putri, N. H., Astabella, R. D., Pratiwi, C. B. I., Ayumi, N., Hayat, D. M., Putra, J. H., & Putri, R. F. (2020). Study of design discharge and river capacity in Celeng Sub-watershed, Special Region of Yogyakarta. IOP Conference Series: Earth and Environmental Science, 451(1). https://doi.org/10.1088/1755-1315/451/1/012075

Agonafir, C., Lakhankar, T., Khanbilvardi, R., Krakauer, N., Radell, D., & Devineni, N. (2023). A review of recent advances in urban flood research. Dalam Water Security (Vol. 19). Elsevier B.V. https://doi.org/10.1016/j.wasec.2023.100141

Ansori, M. B., Lasminto, U., & Kartika, A. A. G. (2023). FLOOD HYDROGRAPH ANALYSIS USING SYNTHETIC UNIT HYDROGRAPH, HEC-HMS, AND HEC-RAS 2D UNSTEADY FLOW PRECIPITATION ON-GRID MODEL FOR DISASTER RISK MITIGATION. International Journal of GEOMATE, 25(107), 50–58. https://doi.org/10.21660/2023.107.3719

Arianti, I., Soemarno, A.W, H., & R. Sulistyono. (2018). RAINFALL ESTIMATION BY USING THIESSEN POLYGONS, INVERSE DISTANCE WEIGHTED, SPLINE, AND KRIGING METHODS: A CASE STUDY IN PONTIANAK, WEST KALIMANTAN. International Journal of Education and Research, 6(11). www.ijern.com

Balai Bendungan. (2017). Petunjuk Teknis Perhitungan Debit Banjir Pada Bendungan. Direktorat Jenderal Sumber Daya Air Kementerian PUPR.

Banjara, M., Bhusal, A., Ghimire, A. B., & Kalra, A. (2024). Impact of Land Use and Land Cover Change on Hydrological Processes in Urban Watersheds: Analysis and Forecasting for Flood Risk Management. Geosciences (Switzerland), 14(2). https://doi.org/10.3390/geosciences14020040

Brunner, G. W., Ackerman, C. T., & Goodell, C. R. (2024). HEC-RAS River Analysis System HEC-RAS User’s Manual Version 6.5.

BSN. (2016). SNI 2415:2016 Tata cara perhitungan debit banjir rencana. Badan Standardisasi Nasional. www.bsn.go.id

BWS Sumatera II Medan. (2022). Preparation of Belawan – Deli – Percut - Padang River Basins Flood Management Project in North Sumatera Province. BWS Sumatera II Medan.

Chow, V. Te. (1959). Open-Channel Hydraulics. McGraw Hill Book Company.

DIBI. (t.t.). Daftar Infromasi Bencana Indonesia (DIBI) Badan Nasional Penanggulangan Bencana.

Djafri, S. A., Cherhabil, S., Hafnaoui, M. A., & Madi, M. (2024). Flood modeling using HEC-RAS 2D and IBER 2D: a comparative study. Water Supply. https://doi.org/10.2166/ws.2024.184

Emanuel, R. E., Buckley, J. J., Caldwell, P. V., McNulty, S. G., & Sun, G. (2015). Influence of basin characteristics on the effectiveness and downstream reach of interbasin water transfers: Displacing a problem. Environmental Research Letters, 10(12). https://doi.org/10.1088/1748-9326/10/12/124005

Yulianti, E., & Prasetyo, E. (2024). OPTIMIZATION OF RETENTION POND IN FLOOD CONTROL EFFORTS IN PEKANBARU (URBAN FLOOD SYSTEM IMPROVEMENT PROJECT). International Journal of Social Science, 3(5), 561–580. https://doi.org/10.53625/ijss.v3i5.7425

Farid, M., Pratama, M. I., Kuntoro, A. A., Adityawan, M. B., Rohmat, F. I. W., & Moe, I. R. (2022). Flood Prediction due to Land Cover Change in the Ciliwung River Basin. International Journal of Technology, 13(2), 356–366. https://doi.org/10.14716/ijtech.v13i2.4662

Fraiture, C. de, Susanto, R. H., Suryadi, F. X., & Wahyu, H. M. H. (2017). Urban Drainage Management and Flood Control Improvement Using the Duflow Case Study: Aur Sub Catchment, Palembang, South Sumatra, Indonesia. Makara Journal of Technology, 21(2), 83. https://doi.org/10.7454/mst.v21i2.3085

Indrawati, D., Hadihardaja, I. K., Adityawan, M. B., Pahrizal, S. F., & Taufik, F. (2017). Diversion Canal to Decrease Flooding (Case Study: Kebon Jati-Kalibata Segment, Ciliwung River Basin). MATEC Web of Conferences, 147. https://doi.org/10.1051/matecconf/201814703006

Ionno, A., Arsenault, R., Troin, M., Martel, J. L., & Brissette, F. (2024). Impacts of climate change on flood volumes over North American catchments. Journal of Hydrology, 630. https://doi.org/10.1016/j.jhydrol.2024.130688

Kaya, Y. Z., & Üneş, F. (2025). Comparison of three different satellite data on 2D flood modeling using HEC-RAS (5.0.7) software and investigating the improvement ability of the RAS Mapper tool. Journal of Flood Risk Management, 18(1). https://doi.org/10.1111/jfr3.13046

Kim, B., Sanders, B. F., Schubert, J. E., & Famiglietti, J. S. (2014). Mesh type tradeoffs in 2D hydrodynamic modeling of flooding with a Godunov-based flow solver. Advances in Water Resources, 68, 42–61. https://doi.org/10.1016/j.advwatres.2014.02.013

Liu, Z., Merwade, V., & Jafarzadegan, K. (2019). Investigating the role of model structure and surface roughness in generating flood inundation extents using one- and two-dimensional hydraulic models. Journal of Flood Risk Management, 12(1). https://doi.org/10.1111/jfr3.12347

Mattas, C., Karpouzos, D., Georgiou, P., & Tsapanos, T. (2023). Two-Dimensional Modelling for Dam Break Analysis and Flood Hazard Mapping: A Case Study of Papadia Dam, Northern Greece. Water (Switzerland), 15(5). https://doi.org/10.3390/w15050994

Mihu-Pintilie, A., Cîmpianu, C. I., Stoleriu, C. C., Pérez, M. N., & Paveluc, L. E. (2019a). Using high-density LiDAR data and 2D streamflow hydraulic modeling to improve urban flood hazard maps: A HEC-RAS multi-scenario approach. Water (Switzerland), 11(9). https://doi.org/10.3390/w11091832

Mihu-Pintilie, A., Cîmpianu, C. I., Stoleriu, C. C., Pérez, M. N., & Paveluc, L. E. (2019b). Using high-density LiDAR data and 2D streamflow hydraulic modeling to improve urban flood hazard maps: A HEC-RAS multi-scenario approach. Water (Switzerland), 11(9). https://doi.org/10.3390/w11091832

Muthusamy, M., Casado, M. R., Salmoral, G., Irvine, T., & Leinster, P. (2019). A remote sensing based integrated approach to quantify the impact of fluvial and pluvial flooding in an urban catchment. Remote Sensing, 11(5). https://doi.org/10.3390/rs11050577

Naito, K., & Parker, G. (2019). Can Bankfull Discharge and Bankfull Channel Characteristics of an Alluvial Meandering River be Cospecified From a Flow Duration Curve? Journal of Geophysical Research: Earth Surface, 124(10), 2381–2401. https://doi.org/10.1029/2018JF004971

Natakusumah, D. K., Hamoko, W., & Harlan, D. (2011). Prosedur Umum Perhitungan Hidrograf Satuan Sintetis dengan Cara ITB dan Beberapa Contoh Penerapannya. Jurnal Teknik Sipil ITB, 18(3).

Natakusumah, D. K., Harlan, D., & Hatmoko, W. (2013). A new synthetic unit hydrograph computation method based on the mass conservation principle. WIT Transactions on Ecology and the Environment, 172, 27–38. https://doi.org/10.2495/RBM130031

Nugroho, J., Soekarno, I., & Harlan, D. (2018). Model of Ciliwung River Flood Diversion Tunnel Using HEC-RAS Software. MATEC Web of Conferences, 147. https://doi.org/10.1051/matecconf/201814703001

Gopalan, S. P., Champathong, A., Sukhapunnaphan, T., Nakamura, S., & Hanasaki, N. (2022). Inclusion of flood diversion canal operation in the H08 hydrological model with a case study from the Chao Phraya River basin: model development and validation. Hydrology and Earth System Sciences, 26(9), 2541–2560. https://doi.org/10.5194/hess-26-2541-2022

Pratiwi, V., Yakti, B. P., & Widyanto, B. E. (2020). Flood Control Reduction Analysis using HEC-RAS due to Local Floods in Central Jakarta. IOP Conference Series: Materials Science and Engineering, 879(1). https://doi.org/10.1088/1757-899X/879/1/012167

Sharifi, M., Tabatabai, M. R. M., & Najafabadi, S. H. G. (2021). Determination of river design discharge (Tar river case study). Journal of Water and Climate Change, 12(2), 612–626. https://doi.org/10.2166/wcc.2020.278

Singh, H., Nielsen, M., & Greatrex, H. (2023). Causes, impacts, and mitigation strategies of urban pluvial floods in India: A systematic review. Dalam International Journal of Disaster Risk Reduction (Vol. 93). Elsevier Ltd. https://doi.org/10.1016/j.ijdrr.2023.103751

Slamet, B., Nababan, A. M., & Anggraini, N. (2024). Prediction of land cover change in the Belawan watershed using the cellular automata-markov chain model. IOP Conference Series: Earth and Environmental Science, 1352(1). https://doi.org/10.1088/1755-1315/1352/1/012050

Sterte, E. J., Lidman, F., Lindborg, E., Sjöberg, Y., & Laudon, H. (2021). How catchment characteristics influence hydrological pathways and travel times in a boreal landscape. Hydrology and Earth System Sciences, 25(4), 2133–2158. https://doi.org/10.5194/hess-25-2133-2021

Sugianto, S., Deli, A., Miswar, E., Rusdi, M., & Irham, M. (2022). The Effect of Land Use and Land Cover Changes on Flood Occurrence in Teunom Watershed, Aceh Jaya. Land, 11(8). https://doi.org/10.3390/land11081271

Tabari, H. (2020). Climate change impact on flood and extreme precipitation increases with water availability. Scientific Reports, 10(1). https://doi.org/10.1038/s41598-020-70816-2

Tarasova, L., Gnann, S., Yang, S., Hartmann, A., & Wagener, T. (2024). Catchment characterization: Current descriptors, knowledge gaps and future opportunities. Dalam Earth-Science Reviews (Vol. 252). Elsevier B.V. https://doi.org/10.1016/j.earscirev.2024.104739

Tarigan, S. D. (2016). Land Cover Change and its Impact on Flooding Frequency of Batanghari Watershed, Jambi Province, Indonesia. Procedia Environmental Sciences, 33, 386–392. https://doi.org/10.1016/j.proenv.2016.03.089

Teng, F., Shen, Q., Huang, W., Ginis, I., & Cai, Y. (2017). Characteristics of river flood and storm surge interactions in a tidal river in Rhode Island, USA. Procedia IUTAM, 25, 60–64. https://doi.org/10.1016/j.piutam.2017.09.009

Udom, N. (2018). Evaluation of Flood Risk Reduction Project at Tenggang River, Semarang City, Central Java Province, Indonesia. Journal of the Civil Engineering Forum, 4(2).

Vashist, K., & Singh, K. K. (2023). HEC-RAS 2D modeling for flood inundation mapping: a case study of the Krishna River Basin. Water Practice and Technology, 18(4), 831–844. https://doi.org/10.2166/wpt.2023.048

Wang, K., Wang, Z., Liu, K., Cheng, L., Wang, L., & Ye, A. (2019). Impacts of the eastern route of the South-to-North Water Diversion Project emergency operation on flooding and drainage in water-receiving areas: An empirical case in China. Natural Hazards and Earth System Sciences, 19(3), 555–570. https://doi.org/10.5194/nhess-19-555-2019

Wang, X., & Bi, H. (2020). The effects of rainfall intensities and duration on SCS-CN model parameters under simulated rainfall. Water (Switzerland), 12(6). https://doi.org/10.3390/W12061595

Yamamoto, K., Sayama, T., & Apip. (2021). Impact of climate change on flood inundation in a tropical river basin in Indonesia. Progress in Earth and Planetary Science, 8(1). https://doi.org/10.1186/s40645-020-00386-4

Yang, J., Xu, C., Ni, X., & Zhang, X. (2022). Study on Urban Rainfall–Runoff Model under the Background of Inter-Basin Water Transfer. Water (Switzerland), 14(17). https://doi.org/10.3390/w14172660

Zainal, N. N., & Talib, S. H. A. (2024). Review paper on applications of the HEC-RAS model for flooding, agriculture, and water quality simulation. Dalam Water Practice and Technology (Vol. 19, Nomor 7, hlm. 2883–2900). IWA Publishing. https://doi.org/10.2166/wpt.2024.173

Zeiger, S. J., & Hubbart, J. A. (2021). Measuring and modeling event-based environmental flows: An assessment of HEC-RAS 2D rain-on-grid simulations. Journal of Environmental Management, 285. https://doi.org/10.1016/j.jenvman.2021.112125

Zevri, A. (2018). ANALISIS TINGGI MUKA AIR BANJIR DAS BELAWAN DENGAN MENGGUNAKAN SOFTWARE HECRAS. Jurnal Teknik Sipil Universitas Syiah Kuala, 7(1).

Zhuang, W. (2016). Eco-environmental impact of inter-basin water transfer projects: a review. Environmental Science and Pollution Research, 23(13), 12867–12879. https://doi.org/10.1007/s11356-016-6854-3

Downloads

Published

2025-01-09

How to Cite

Jul Fachri, F., Harlan, D., Nugroho, J., & Chaidar, A. N. (2025). ANALISIS KINERJA SALURAN PENGALIHAN BANJIR PADA DAS SIKAMBING KOTA MEDAN. Jurnal Review Pendidikan Dan Pengajaran, 8(1), 908–921. https://doi.org/10.31004/jrpp.v8i1.41368

Similar Articles

1 2 > >> 

You may also start an advanced similarity search for this article.