PERAN NEURODEGERATIVE PADA PATOGENESIS GLAUCOMA : LITERATURE REVIEW
DOI:
https://doi.org/10.31004/prepotif.v9i3.50333Keywords:
Glaucoma, Neurodegeneration, PatogenesisAbstract
Glaukoma merupakan salah satu penyebab utama kehilangan penglihatan permanen di dunia dan digolongkan sebagai penyakit neurodegeneratif multifaktorial. Kondisi ini dipengaruhi oleh faktor tekanan intraokular (TIO) maupun faktor non-TIO, yang keduanya berkontribusi terhadap kerusakan dan kematian Retinal Ganglion Cells (RGCs). Penelitian ini bertujuan untuk mengevaluasi peran mekanisme neurodegeneratif dalam patogenesis glaukoma melalui pendekatan tinjauan pustaka. Sebanyak 10 studi terkait mekanisme neurodegenerasi dianalisis, menunjukkan bahwa 5 studi (50%) menyoroti peran neuroinflamasi, 3 studi (30%) menekankan stres oksidatif, 1 studi (10%) membahas neurodegenerasi akson, dan 1 studi (10%) mengulas mekanisme eksitotoksisitas. Hasil tinjauan ini memperlihatkan bahwa proses neurodegeneratif memiliki peran sentral dan kompleks dalam perkembangan glaukoma. Mekanisme-mekanisme tersebut tidak bekerja secara terpisah, tetapi sering berinteraksi dan memperkuat satu sama lain. Neuroinflamasi, misalnya, kerap dipicu oleh stres oksidatif yang menyebabkan kerusakan jaringan saraf, sehingga meningkatkan aktivasi mikroglia fenotipe M1 dan astrosit reaktif A1. Aktivasi sel-sel ini kemudian memperburuk kerusakan Optic Nerve Head (ONH) dan mempercepat kematian RGCs. Temuan ini menegaskan bahwa glaukoma tidak hanya dipandang sebagai gangguan akibat peningkatan TIO, tetapi sebagai penyakit neurodegeneratif kompleks yang melibatkan interaksi berbagai mekanisme patologi. Pemahaman yang lebih komprehensif mengenai proses neurodegeneratif ini diharapkan dapat mendukung pengembangan strategi terapi yang lebih efektif dalam mencegah progresivitas glaukoma.References
Allan, H., Martin, A., & Joshua, P. (2024). Degenerative disease of nervous system - Adams and Victor's principles of neurology (12th ed.). McGraw Hill / Medical.
Allison, K., Patel, D., & Alabi, O. (2020). Epidemiology of glaucoma: The past, present, and predictions for the future. Cureus, 12(11), e11686. https://doi.org/10.7759/cureus.11686
Balasankara, R., Ramesh, K., Yogapriya, S., et al. (2025). Impaired axonal transport contributes to neurodegeneration in a Cre-inducible mouse model of myocilin-associated glaucoma. JCI Insight. https://doi.org/10.1172/jci.insight.188710
B’Ann, T. G., Kiland, J. A., Tian, B., & Kaufman, P. L. (2024). Aqueous humor: Secretion and dynamics. Fastest Otolaryngology & Ophthalmology Insight Engine. https://entokey.com/aqueous-humor-secretion-and-dynamics-2/
Boccuni, I., & Fairless, R. (2022). Retinal glutamate neurotransmission: From physiology to pathophysiological mechanisms of retinal ganglion cell degeneration. Life, 12(5), 638. https://doi.org/10.3390/life12050638
Boyd, K. (2024). Understanding glaucoma: Symptoms, causes, diagnosis, treatment. American Academy of Ophthalmology. https://www.aao.org/eye-health/diseases/what-is-glaucoma
Boyd, K. (2024). What is ocular hypertension. American Academy of Ophthalmology. https://www.aao.org/eye-health/diseases/what-is-ocular-hypertension
Centers for Disease Control and Prevention. (2024). Vision and health: About glaucoma. https://www.cdc.gov/vision-health/about-eye-disorders/glaucoma.html
Chan, J. W., Chan, N. C. Y., & Sadun, A. A. (2021). Glaucoma as neurodegeneration in the brain. Eye and Brain, 13, 21–28. https://doi.org/10.2147/EB.S293765
Choi, S. H., Kim, K. Y., Perkins, G. A., et al. (2020). AIBP protects retinal ganglion cells against neuroinflammation and mitochondrial dysfunction in glaucomatous neurodegeneration. Redox Biology, 37, 101703. https://doi.org/10.1016/j.redox.2020.101703
Danışman, B., Ercan Kelek, S., & Aslan, M. (2023). Resveratrol in neurodegeneration, in neurodegenerative diseases, and in the redox biology of the mitochondria. Psychiatry and Clinical Psychopharmacology, 33(2). https://doi.org/10.5152/pcp.2023.23633
Dan, T. (2025). Eye pressure. American Academy of Ophthalmology. https://www.aao.org/eye-health/anatomy/eye-pressure
Dietze, J., Blair, K., Zeppieri, M., et al. (2024). Glaucoma. In StatPearls. StatPearls Publishing. https://www.ncbi.nlm.nih.gov/books/NBK538217/
Dias, M. S., Luo, X., Ribas, V. T., Petrs-Silva, H., & Koch, J. C. (2022). The role of axonal transport in glaucoma. International Journal of Molecular Sciences, 23(7), 3935. https://doi.org/10.3390/ijms23073935
Feng, L., Dai, S., Zhang, C., et al. (2024). Ripa-56 protects retinal ganglion cells in glutamate-induced retinal excitotoxic model of glaucoma. Scientific Reports, 14, 3834. https://doi.org/10.1038/s41598-024-54075-z
Fingert, J. H., Miller, K., Hedberg-Buenz, A., Roos, B. R., Lewis, C. J., Mullins, R. F., & Anderson, M. G. (2017). Transgenic TBK1 mice have features of normal tension glaucoma. Human Molecular Genetics, 26(1), 124–132. https://doi.org/10.1093/hmg/ddw372
Gauthier, A. C., & Liu, J. (2016). Neurodegeneration and neuroprotection in glaucoma. The Yale Journal of Biology and Medicine, 89(1), 73–79. https://pmc.ncbi.nlm.nih.gov/articles/PMC4797839/
Geng, L., Fan, L. M., Liu, F., et al. (2020). Nox2-dependent redox-regulation of microglial response to amyloid-β stimulation and microgliosis in aging. Scientific Reports, 10, 1582. https://doi.org/10.1038/s41598-020-58422-8
Ghazi, O., Bou, G., Lauren, K., et al. (2024). Addressing neurodegeneration in glaucoma: Mechanisms, challenges, and treatments. Progress in Retinal and Eye Research. https://doi.org/10.1016/j.preteyeres.2024.101261
Gulgun, T. (2022). Molecular regulation of neuroinflammation in glaucoma: Current knowledge and ongoing search for new treatment targets. Progress in Retinal and Eye Research, 101, 100998. https://doi.org/10.1016/j.preteyeres.2021.100998
Hoffmann, E. M., & Lamparter, J. (2016). Differentiation of ocular hypertension. Der Ophthalmologe, 113(8), 715–728.
Hwang, S., Choi, S., Choi, S., Kim, K.-Y., Miller, Y. I., & Ju, W.-K. (2025). Apolipoprotein A-I binding protein–mediated neuroprotection in glaucomatous neuroinflammation and neurodegeneration. Neural Regeneration Research, 20(5), 1414–1415. https://doi.org/10.4103/NRR.NRR-D-24-00221
Ishikawa, M., Izumi, Y., Sato, K., et al. (2023). Glaucoma and microglia-induced neuroinflammation. Frontiers in Ophthalmology, 3, 1132011. https://doi.org/10.3389/fopht.2023.1132011
John, F. (2025). Kanski clinical ophthalmology: A systematic approach (10th ed.). Elsevier Limited.
Kamel, K., et al. (2017). [Oxidative stress in glaucoma—citation adjusted accordingly if needed].
Krishnan, A., Kocab, A. J., Zacks, D. N., et al. (2019). A small peptide antagonist of the Fas receptor inhibits neuroinflammation and prevents axon degeneration and retinal ganglion cell death in a mouse model of glaucoma. Journal of Neuroinflammation, 16, 184. https://doi.org/10.1186/s12974-019-1576-3
Li, P., Shi, X., Liu, H., et al. (2025). HOCPCA exerts neuroprotection on retinal ganglion cells by modulating oxidative stress and neuroinflammation in experimental glaucoma. Neuroscience Bulletin, 41, 1329–1346. https://doi.org/10.1007/s12264-025-01417-0
Macanian, J., & Sharma, S. C. (2022). Pathogenesis of glaucoma. Encyclopedia, 2(4). https://doi.org/10.3390/encyclopedia2040124
Mahabadi, N., Zeppieri, M., & Tripathy, K. (2024). Open angle glaucoma. StatPearls. https://www.ncbi.nlm.nih.gov/books/NBK441887/
Maddineni, P., Kasetti, R. B., Patel, P. D., et al. (2020). CNS axonal degeneration and transport deficits precede structural and functional loss of retinal ganglion cells in glaucoma. Molecular Neurodegeneration, 15, 48. https://doi.org/10.1186/s13024-020-00400-9
Marchesi, N., Fahmideh, F., Boschi, F., & Pascale, A. (2021). Ocular neurodegenerative diseases: Interconnections between retina and cortical areas. Cells, 10(9), 2394. https://doi.org/10.3390/cells10092394
Means, J. C., Lopez, A. A., & Koulen, P. (2020). Resveratrol protects optic nerve astrocytes from oxidative stress–induced cell death. Cellular and Molecular Neurobiology, 40, 911–926. https://doi.org/10.1007/s10571-019-00781-6
National Eye Institute. (2024). Types of glaucoma. https://www.nei.nih.gov/learn-about-eye-health/eye-conditions-and-diseases/glaucoma/types-glaucoma
Rolle, T., Ponzetto, A., & Malinverni, L. (2021). The role of neuroinflammation in glaucoma. Frontiers in Neurology, 11, 612422. https://doi.org/10.3389/fneur.2020.612422
Rutigliani, C., Tribble, J. R., Hagström, A., et al. (2022). Widespread retina and optic nerve neuroinflammation in glaucoma patients. Acta Neuropathologica Communications, 10, 118. https://doi.org/10.1186/s40478-022-01427-3
Sen, S., Saxena, R., Tripathi, M., et al. (2020). Neurodegeneration in Alzheimer’s disease and glaucoma: Overlaps and missing links. Eye, 34, 1546–1553. https://doi.org/10.1038/s41433-020-0836-x
Si, Z., Fan, Y., Wang, M., et al. (2025). The role of RGC degeneration in the pathogenesis of glaucoma. International Journal of Biological Sciences, 21(1), 211–232. https://doi.org/10.7150/ijbs.103222
Stephani, B., & Richard, T. (2019). Axon injury signaling and compartmentalized injury response in glaucoma. Progress in Retinal and Eye Research. https://doi.org/10.1016/j.preteyeres.2019.07.002
Vernazza, S., Oddone, F., Tirendi, S., & Bassi, A. M. (2021). Risk factors for RGC distress and neuroprotective intervention. International Journal of Molecular Sciences, 22(15), 7994. https://doi.org/10.3390/ijms22157994
Venanzi, A. W., McGee, L. D., & Hackam, A. S. (2025). Neuroprotective and axonal regenerative activities of inflammatory cells. Molecular Neurobiology, 62, 6212–6227. https://doi.org/10.1007/s12035-024-04679-3
Yanoff, M., & Duker, J. S. (2018). Ophthalmology (5th ed.). Elsevier Masson.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Muh. Aliah Anugrah Ilham, Suliati, P. Amir, Wahidah R, Hanna Aulia Namirah, Andi Masadipa

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work’s authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal’s published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).







