POTENSI EKSTRAK DAUN JERUK PURUT (Citrus hystrix D.C) SEBAGAI INSECT GROWTH REGULATOR TERHADAP LARVA NYAMUK Aedes aegypti L.
DOI:
https://doi.org/10.31004/prepotif.v8i2.30756Keywords:
Ekstrak, Citrus hystrix, Aedes aegypti, larva, pupaAbstract
Larvasida bahan alam mulai dikembangkan untuk mengontrol populasi nyamuk. Eksplorasi daun Citrus hystrix masih terbatas pada larvasida kematian larva, insektisida, dan repellen, padahal sebenarnya IGR dengan konsentrasi rendah dalam menghambat perkembangan larva tanpa harus menyebabkan kematian larva. Konsentrasi rendah dapat mengurangi risiko pencemaran lingkungan. Tujuan menganalisis potensi daun C. hystrix sebagai bahan aktif IGR terhadap larva Aedes aegypti. Penelitian ini merupakan eksperimen murni dengan desain post test only control group design. Daun jeruk kering diproses hingga menjadi ekstrak. Ekstrak dibuat larutan dengan konsentrasi 50, 300, 550, 750, dan 1.000 ppm. Semua larutan dimasukkan 100 ml ke dalam gelas plastik dan diisi 25 individu larva Ae. aegypti. Setiap konsentrasi memiliki replikasi sebanyak lima kali. Jumlah ketahanan dan mortalitas larva Ae. aegypti serta perubahan larva menjadi pupa diamati selama 8 hari. Hasil yang diperoleh dianalisis dengan statistik deskriptif. Hasil penelitian menunjukkan bahwa ekstrak daun C. hystrix konsentrasi 50 ppm pada hari ke 8 menghasilkan rata-rata kehidupan larva Ae. aegypti sebanyak 16-40% dan belum berubah menjadi stadium pupa. Ekstrak daun C. hystrix konsentrasi 300 dan 550 ppm pada hari ke 8 menghasilkan rata-rata kehidupan larva Ae. aegypti sebanyak 0-32%. Sisa larva Ae. aegypti yang masih hidup belum berubah menjadi stadium pupa. Ekstrak daun C. hystrix konsentrasi 750-1.000 ppm pada hari ke 8 menghasilkan rata-rata kehidupan larva Ae. aegypti sebanyak 0-4%. Simpulan penelitian ini adalah ekstrak etanol 95% daun C. hystrix memiliki potensi sebagai bahan aktif IGR terhadap larva Ae. aegypti dimana tidak terbentuk pupa Ae. aegypti selama perlakuan hingga pada hari ke 8.References
Adrianto, H., Yotopranoto, S., & Hamidah, H. (2014). Efektivitas Ekstrak Daun Jeruk Purut (Citrus Hystrix), Jeruk Limau (Citrus Amblycarpa), Dan Jeruk Bali (Citrus Maxima) Terhadap Larva Aedes aegypti. Aspirator Journal of Vector-Borne Diseases, 6(1), 1–6.
Ahdiyah, I., & Purwani, K. I. (2015). Pengaruh Ekstrak Daun Mangkokan (Nothopanax Scutellarium) sebagai Larvasida Nyamuk Culex Sp. Jurnal Sains Dan Seni ITS, 4(2).
Balachandran, C., Anbalagan, S., Kandeepan, C., Arun Nagendran, N., Jayakumar, M., Fathi Abd_Allah, E., Alqarawi, A. A., Hashem, A., & Baskar, K. (2021). Molecular docking studies of natural alkaloids as acetylcholinesterase (AChE1) inhibitors in Aedes aegypti. Journal of Asia-Pacific Entomology, 24(3), 645–652.
Bannister-Tyrrell, M., Hillman, A., Indriani, C., Ahmad, R. A., Utarini, A., Simmons, C. P., Anders, K. L., & Sergeant, E. (2023). Utility of surveillance data for planning for dengue elimination in Yogyakarta, Indonesia: A scenario-tree modelling approach. BMJ Global Health, 8(11).
Benelli, G. (2015). Research in mosquito control: current challenges for a brighter future. Parasitology Research, 114(8), 2801–2805. https://doi.org/10.1007/s00436-015-4586-9
Bernatchez, J. A., Tran, L. T., Li, J., Luan, Y., Siqueira-Neto, J. L., & Li, R. (2020). Drugs for the Treatment of Zika Virus Infection. Journal of Medicinal Chemistry, 63(2), 470–489.
Castillo-Morales, R. M., Serrano, S. O., Villamizar, A. L. R., Mendez-Sanchez, S. C., & Duque, J. E. (2021). Impact of Cymbopogon flexuosus (Poaceae) essential oil and primary components on the eclosion and larval development of Aedes aegypti. Scientific Reports, 11(1), 24291.
Cecep, D. S., Wahyudin, D., Santoso, H. J., Latho, I., & Gunawan, A. T. (2018). The Effectiveness of Insect Growth Regulator (IGR) on the Growth and the Development of Aedes aegypti and Aedes albopictus in Tangerang City, Indonesia. Journal of Medical Science And Clinical Research, 6(4), 890–902.
Centers for Disease Control and Prevention. (2023, December 7). Treatment & Prevention | Chikungunya virus | CDC. Centers for Disease Control and Prevention. https://www.cdc.gov/chikungunya/hc/treatment-prevention.html
Devillers, J. (2020). Fate and ecotoxicological effects of pyriproxyfen in aquatic ecosystems. Environmental Science and Pollution Research, 27(14), 16052–16068.
Dwicahya, B., Arsin, A. A., Ishak, H., Hamid, F., & Mallongi, A. (2023). Aedes Sp. Mosquito Resistance and the Effectiveness of Biolarvicides on Dengue Vector Mortality. Pharmacognosy Journal, 15(4), 541–546.
Granados-Echegoyen, C., Pérez-Pacheco, R., Soto-Hernández, M., Ruiz-Vega, J., Lagunez-Rivera, L., Alonso-Hernandez, N., & Gato-Armas, R. (2014). Inhibition of the growth and development of mosquito larvae of Culex quinquefasciatus (Diptera: Culicidae) treated with extract from leaves of Pseudocalymma alliaceum (Bignonaceae). Asian Pacific Journal of Tropical Medicine, 7(8), 594–601.
Hustedt, J. C., Boyce, R., Bradley, J., Hii, J., & Alexander, N. (2020). Use of pyriproxyfen in control of Aedes mosquitoes: A systematic review. PLOS Neglected Tropical Diseases, 14(6), e0008205.
Ilham, R., Lelo, A., Harahap, U., Widyawati, T., & Siahaan, L. (2019). The Effectivity of Ethanolic Extract from Papaya Leaves (Carica papaya L.) as an Alternative Larvacide to Aedes spp. Open Access Macedonian Journal of Medical Sciences, 7(20), 3395–3399.
Ishak, N. I., Kasman, & Chandra. (2019). Effectiveness of Lime Skin Extract (Citrus Amblycarpa) as Natural Larvacide Aedes Aegypti Instar III. Media Kesehatan Masyarakat Indonesia, 15(3), 302–310.
Jeon, J. H., Jeong, S. A., Kim, J.-A., Park, D.-S., Seo, B., & Oh, H.-W. (2022). Disruption of Juvenile Hormone Receptor Binding in Tobacco Cutworm Larvae by Gladiolus gandavensis extract. The Korean Journal of Pesticide Science, 26(1), 74–82.
Jian, R., Lin, Y., Li, Y., Wu, W., Ren, X., Liang, Z., Kong, L., Cai, J., Lao, C., Wu, M., Chen, W., Chen, J., Hong, W. D., & Sheng, Z. (2022). Larvicidal Activity of Two Rutaceae Plant Essential Oils and Their Constituents Against Aedes albopictus (Diptera: Culicidae) in Multiple Formulations. Journal of Medical Entomology, 59(5), 1669–1677.
Kaligis, E. C., Ratag, B. T., & Langi, F. F. L. (2023). Analysis Of Dengue Hemorrhagic Fever Surveillance Data (2012-2021) in Indonesia. Indonesian Journal of Public Health and Preventive Medicine, 2(1).
Kementerian Kesehatan Republik Indonesia. (2021). Strategi Nasional Penanggulangan Dengue 2021-2025. Direktorat Jenderal Pencegahan dan Pengendalian Penyakit. https://p2p.kemkes.go.id/strategi-nasional-penanggulangan-dengue-2021-2025/
Lubis, R., Ilyas, S., & Panggabean, M. (2018). The Effectivity Test of Aloe Vera Leaf Extract to Larvae Aedes sp. Asian Journal of Pharmaceutical and Clinical Research, 11(7), 262.
Maoz, D., Ward, T., Samuel, M., Müller, P., Runge-Ranzinger, S., Toledo, J., Boyce, R., Velayudhan, R., & Horstick, O. (2017). Community effectiveness of pyriproxyfen as a dengue vector control method: A systematic review. PLOS Neglected Tropical Diseases, 11(7), e0005651.
Marin, G., Arivoli, S., & Tennyson, S. (2020). Larvicidal activity of two rutaceae species against the vectors of dengue and filarial fever. Journal of Experimental Biology and Agricultural Sciences, 8(2), 166–175.
Masters, S. W., Knapek, K. J., & Kendall, L. V. (2020). Rearing Aedes aegypti Mosquitoes in a laboratory setting. Laboratory Animal Science Professional, 55(6), 42–45.
Morais, H. L. M. D. N., Feitosa, T. C., Rodrigues, J. G. M., Lira, M. G. S., Nogueira, R. A., Luz, T. R. S. A., Silva-Souza, N., Lima, N. M., Andrade, T. D. J. A. D. S., & Miranda, G. S. (2020). Hydroalcoholic extract of Caryocar brasiliense Cambess. leaves affect the development of Aedes aegypti mosquitoes. Revista Da Sociedade Brasileira de Medicina Tropical, 53, e20200176.
Moura, L., De Nadai, B. L., & Corbi, J. J. (2023). One does not simply apply larvicides: Aedes aegypti from Araraquara (Brazil) has reduced susceptibility to pyriproxyfen. Veterinary Parasitology: Regional Studies and Reports, 41, 100875.
Muema, J. M., Njeru, S. N., Colombier, C., & Marubu, R. M. (2016). Methanolic extract of Agerantum conyzoides exhibited toxicity and growth disruption activities against Anopheles gambiae sensu stricto and Anopheles arabiensis larvae. BMC Complementary and Alternative Medicine, 16(1), 475.
Oliveros-Díaz, A. F., Pájaro-González, Y., Cabrera-Barraza, J., Hill, C., Quiñones-Fletcher, W., Olivero-Verbel, J., & Castillo, F. D. (2022). Larvicidal activity of plant extracts from Colombian North Coast against Aedes aegypti L. mosquito larvae. Arabian Journal of Chemistry, 15(12), 104365.
Onen, H., Luzala, M. M., Kigozi, S., Sikumbili, R. M., Muanga, C. J. K., Zola, E. N., Wendji, S. N., Buya, A. B., Balciunaitiene, A., Viškelis, J., Kaddumukasa, M. A., & Memvanga, P. B. (2023). Mosquito-Borne Diseases and Their Control Strategies: An Overview Focused on Green Synthesized Plant-Based Metallic Nanoparticles. MDPI.
Paris, V., Hardy, C., Hoffmann, A. A., & Ross, P. A. (2023). How often are male mosquitoes attracted to humans? Royal Society Open Science, 10(10).
Qonitah, F., Ariastuti, R., Ahwan, & Nurul Astia Wuri, P. M. (2022). Skrinning Fitokimia Ekstrak Etanol Daun Jeruk Purut (Citrus hystrix) dari Kabupaten Klaten. GEMA, 34(01), 47–51.
Redo, T., Triwani, T., Anwar, C., & Salni, S. (2019). Larvicidal Activity of Ketapang Leaf Fraction (Terminalia catappa L) on Aedes aegypti Instar III. Open Access Macedonian Journal of Medical Sciences, 7(21), 3526–3529.
Shahid, A., Zaidi, S. D.-S., Akbar, H., & Saeed, S. (2019). An investigation on some toxic effects of pyriproxyfen in adult male mice. Iranian Journal of Basic Medical Sciences, 22(9), 997–1003.
Silvério, M. R. S., Espindola, L. S., Lopes, N. P., & Vieira, P. C. (2020). Plant Natural Products for the Control of Aedes aegypti: The Main Vector of Important Arboviruses. Molecules, 25(15), 3484.
Smykal, V., Daimon, T., Kayukawa, T., Takaki, K., Shinoda, T., & Jindra, M. (2014). Importance of juvenile hormone signaling arises with competence of insect larvae to metamorphose. Developmental Biology, 390(2), 221–230.
Yankanchi, S. R., Kallapur, V. L., & Holihosur, S. N. (2015). In vitro and in vivo inhibition of haemolymph juvenile hormone esterase activity by the ethanol extract of Clerodendrum inerme in fifth instar larva of castor semilooper, Achaea janata (L.). Current Science, 108(8), 1516–1520.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Jonsen Subagio, Anacy Simproza Melania Themone, Rivo Christian Kutanggas, Sharon Tan, Hebert Adrianto, Vajra Yeshie Kusala
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work’s authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal’s published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).