Prediksi Jumlah Mahasiswa Baru Program Studi Teknik Industri Universitas Al-Azhar Medan Menggunakan Simulasi Monte Carlo

Authors

  • Bani Septiawan Universitas Al-Azhar Medan, Sumatera Utara
  • Misnaini Misnaini Universitas Al Azhar Medan, Sumatera Utara
  • Muhammad Ikhwan Universitas Al Azhar Medan, Sumatera Utara
  • Lindi Cistia Praba Universitas Al Azhar Medan, Sumatera Utara
  • Ilham Basith Abdillah Universitas Al Azhar Medan, Sumatera Utara
  • Muhammad Dzikri Ramadhan Universitas Al Azhar Medan, Sumatera Utara

DOI:

https://doi.org/10.31004/jutin.v9i1.55923

Keywords:

Monte Carlo, Enrollment Prediction, Industrial Engineering, Stochastic Simulation, Random Number Generation

Abstract

This study aims to forecast the number of incoming students in the Industrial Engineering Program at Al-Azhar University Medan using Monte Carlo simulation as a probability-based approach. Historical enrollment data from 2023–2025 were utilized to construct an empirical probability distribution, totaling 180 students. The research procedure includes probability calculation, cumulative probability determination, establishment of random number intervals on a 01–100 scale, and generation of pseudo-random numbers using the Mixed Congruential Random Number Generator (MCRNG) with parameters satisfying the Hull-Dobell theorem. A total of 1,000 simulation iterations were performed to obtain a stable output distribution. The results indicate that simulated probabilities closely approximate theoretical values: 15.00% (2023), 35.00% (2024), and 50.00% (2025), with an average absolute deviation of 0.0037. Based on the probabilistic pattern and historical growth trend, the projected enrollment for 2026 is estimated at 90–95 students. These findings demonstrate that Monte Carlo simulation is an effective tool for data-driven academic planning.

References

Ackermann, M., & Haase, C. (2023). Machine learning-based identification of interpretable process-structure linkages in metal additive manufacturing. Additive Manufacturing, 71. https://doi.org/10.1016/j.addma.2023.103585

Alt, E. M., Qu, Y., Damone, E. M., Liu, J.-O., Wang, C., & Ibrahim, J. G. (2025). Jointly Modeling Time-To-Event and Longitudinal Data With Individual-Specific Change Points: A Case Study in Modeling Tumor Burden. Statistics in Medicine, 44(5). https://doi.org/10.1002/sim.70021

Boukraichi, H., Akkari, N., Casenave, F., & Ryckelynck, D. (2023). A priori compression of convolutional neural networks for wave simulators. Engineering Applications of Artificial Intelligence, 126. https://doi.org/10.1016/j.engappai.2023.106973

Cai, J., Hou, Y., Wang, J., Wang, K., Yang, N., & Xie, G. (2025). Stacked Ensemble Learning Model-Based Prediction and Optimization of the Grade of Titanium Dioxide in High-Titanium Slag. Journal of Sustainable Metallurgy, 11(2), 1525–1541. https://doi.org/10.1007/s40831-025-01056-9

Chandrakar, P., Sharma, N., & Maiti, D. K. (2025). Characterizing flexural randomness in delaminated curvilinear fiber composites with optimized tow angle layups: Machine learning-assisted nonlinear surrogate modeling approach. Composite Structures, 370. https://doi.org/10.1016/j.compstruct.2025.119327

Cheng, P., Wu, M., & Li, C. (2022). The time varying reliability analysis for space focusing mechanism based on probability model. Journal of Mechanical Science and Technology, 36(11), 5587–5597. https://doi.org/10.1007/s12206-022-1022-9

Ghezal, A., & Alzeley, O. (2024). Probabilistic properties and estimation methods for periodic threshold autoregressive stochastic volatility. AIMS Mathematics, 9(5), 11805–11832. https://doi.org/10.3934/math.2024578

Iqbal, S., Habib, S., Ali, M., Shafiq, A., Ur Rehman, A., Ahmed, E. M., Khurshaid, T., & Kamel, S. (2022). The Impact of V2G Charging/Discharging Strategy on the Microgrid Environment Considering Stochastic Methods. Sustainability (Switzerland), 14(20). https://doi.org/10.3390/su142013211

Jang, J., Woo, J. H., & Oh, D. (2025). Accounting for wave-induced environmental uncertainty in CO₂ emission predictions for maritime operations. Science of the Total Environment, 1007. https://doi.org/10.1016/j.scitotenv.2025.180955

Krisam, J., Ryeznik, Y., Carter, K., Kuznetsova, O., & Sverdlov, O. (2024). Understanding an impact of patient enrollment pattern on predictability of central (unstratified) randomization in a multi-center clinical trial. Statistics in Medicine, 43(17), 3313–3325. https://doi.org/10.1002/sim.10117

Kumar, R. (2025). Understanding stochastic methods: Monte Carlo simulation and polynomial chaos expansion explained with a spring-mass system. International Journal of Mechanical Engineering Education. https://doi.org/10.1177/03064190251343204

Li, P.-P., Zhao, Y.-G., Dang, C., Broggi, M., Valdebenito, M. A., & Faes, M. G. R. (2025). An efficient Bayesian updating framework for characterizing the posterior failure probability. Mechanical Systems and Signal Processing, 222. https://doi.org/10.1016/j.ymssp.2024.111768

Li, W., Chen, T., Han, J., Wang, L., & Huang, J. (2024). A High-Precision Map Matching Algorithm Based on Nonlinear Filtering Optimization for IOT Industrial Park. IEEE Sensors Journal, 24(2), 2209–2215. https://doi.org/10.1109/JSEN.2023.3339157

Li, Z., Liang, W., & Lu, P. (2025). Probabilistic prediction of rockburst hazard using Monte Carlo simulation and MAIRCA approach. Environmental Earth Sciences, 84(12). https://doi.org/10.1007/s12665-025-12290-5

Ma, Y., Qu, D., & Pyrozhenko, M. (2026). Bio-RegNet: A Meta-Homeostatic Bayesian Neural Network Framework Integrating Treg-Inspired Immunoregulation and Autophagic Optimization for Adaptive Community Detection and Stable Intelligence. Biomimetics, 11(1). https://doi.org/10.3390/biomimetics11010048

Mai, T. T. (2025). High-dimensional prediction for count response via sparse exponential weights. Statistica Neerlandica, 79(4). https://doi.org/10.1111/stan.70013

Moltó, V., Palmer, M., Polin, M., Ospina-Alvarez, A., & Catalan, I. A. (2024). Predicting fish spawning phenology for adaptive management: Integrating thermal drivers and fishery constraints. Marine Environmental Research, 202. https://doi.org/10.1016/j.marenvres.2024.106713

Pitts, A. J., Yomogida, M., Aidala, A., Gelman, A., & Chen, Q. (2025). Multilevel Regression and Poststratification Using Margins of Poststratifiers: Improving Inference for HIV Health Outcomes During the COVID-19 Pandemic. Statistics in Medicine, 44(18–19). https://doi.org/10.1002/sim.70223

Rabb, E., & Steckenrider, J. J. (2023). Walking Trajectory Estimation Using Multi-Sensor Fusion and a Probabilistic Step Model. Sensors, 23(14). https://doi.org/10.3390/s23146494

Tsai, Y.-H., & Tsay, M.-T. (2025). Electricity Demand Forecasting and Risk Assessment for Campus Energy Management. Energies, 18(20). https://doi.org/10.3390/en18205521

Wu, C., Yu, J., Guarnieri, M., & Xiong, W. (2022). Computational Framework for Machine-Learning-Enabled 13C Fluxomics. ACS Synthetic Biology, 11(1), 103–115. https://doi.org/10.1021/acssynbio.1c00189

Xiao, Y., Chen, L., Duan, Z., & Sun, J. (2025). Joint stationary response prediction of high-dimension strongly nonlinear systems with both uncertain parameters and stochastic excitation by solving FPK equation. Probabilistic Engineering Mechanics, 81. https://doi.org/10.1016/j.probengmech.2025.103795

Yue, L., Tongshuai, H., Wenbo, L., Ge, G., & Liu, L. (2023). Spectral analysis of multiple scattering factors of turbid media for glucose measurement using near-infrared spectroscopy. Journal of Biomedical Optics, 28(6). https://doi.org/10.1117/1.JBO.28.6.065005

Downloads

Published

2026-01-20

How to Cite

Septiawan, B., Misnaini, M., Ikhwan, M., Praba, L. C., Abdillah, I. B., & Ramadhan, M. D. (2026). Prediksi Jumlah Mahasiswa Baru Program Studi Teknik Industri Universitas Al-Azhar Medan Menggunakan Simulasi Monte Carlo. Jurnal Teknik Industri Terintegrasi (JUTIN), 9(1), 1198–1205. https://doi.org/10.31004/jutin.v9i1.55923

Issue

Section

Articles of Research

Similar Articles

<< < 3 4 5 6 7 8 9 10 11 12 > >> 

You may also start an advanced similarity search for this article.