Optimasi Persediaan Toko Mainan Menggunakan Simulasi Monte Carlo untuk Menghadapi Ketidakpastian Permintaan Musiman

Authors

  • Rafa Adhitya Dharmawangsa Nasution Universitas Al – Azhar, Medan, Sumatera Utara
  • Yoddis Pramana Universitas Al – Azhar, Medan, Sumatera Utara
  • Hasyim Fadhillah Lubis Universitas Al – Azhar, Medan, Sumatera Utara
  • Ridho Rahman Hasibuan Universitas Al – Azhar, Medan, Sumatera Utara
  • Khairul Anwar Universitas Al – Azhar, Medan, Sumatera Utara

DOI:

https://doi.org/10.31004/jutin.v9i1.55900

Keywords:

Monte Carlo simulation, Inventory Optimization, Seasonal Demand, Inventory Management, Risk Analysis

Abstract

This study aims to optimize inventory policy in a toy retail store facing seasonal demand uncertainty using Monte Carlo simulation. Fluctuating demand often leads to overstock and stockout risks, increasing holding costs and potential lost sales. Historical daily demand data were used to construct a probabilistic model, followed by 10,000 simulation iterations to generate the probability distribution of total inventory costs. The cost model consists of holding costs and shortage costs. The simulation results indicate that total cost follows a probabilistic distribution and that an optimal reorder point exists to minimize the expected total cost. Sensitivity analysis confirms the trade-off between holding and shortage costs. The findings demonstrate that Monte Carlo simulation effectively supports adaptive, risk-based, and efficient inventory decision-making for small-scale retail businesses.

References

Alshboul, O., Shehadeh, A., & Almasabha, G. (2026). Enhanced seismic resilience of cross-laminated timber buildings: A machine learning approach to developing robust fragility curves. Engineering Applications of Artificial Intelligence, 167. https://doi.org/10.1016/j.engappai.2026.113848

Ardjouna, A., Tegani, I., Benhamadouche, A. D., & Kraa, O. (2025). Modeling and forecasting uncertainties in renewable energy system: A stochastic approach for microgrid planning. Computers and Electrical Engineering, 127. https://doi.org/10.1016/j.compeleceng.2025.110588

Bastos, G. F., Montalvão, J., & Miranda, L. (2026). A Probabilistic Approach for Drift Compensation of Gas Sensor Data. IEEE Sensors Journal. https://doi.org/10.1109/JSEN.2026.3655381

Bauer, C. J. E., Neher, M., Kamm, V., Steinle, L., Lechler, A., & Verl, A. (2025). Lubricant Temperature Observer for Gearboxes in Industrial Robots. IECON Proceedings (Industrial Electronics Conference). https://doi.org/10.1109/IECON58223.2025.11221072

Ben Youssef, Y., Amdouni, A., Manita, G., & Hassine, M. D. E. B. (2025). MedTransNet: a transformer-based clinical decision support framework for early infectious disease prognosis and antimicrobial stewardship. Network Modeling Analysis in Health Informatics and Bioinformatics, 14(1). https://doi.org/10.1007/s13721-025-00653-8

Chen, H., Jiang, X., Hui, H., Zhang, K., Meng, W., & Cheynet, E. (2026). Enhancing probabilistic wind speed forecasting by integrating self-adaptive Bayesian wavelet denoising with deep Gaussian process regression under uncertainties. Renewable Energy, 256. https://doi.org/10.1016/j.renene.2025.123966

Demi̇r, A. K., & Balas, C. E. (2025). Dynamic frequency behavior of hybrid offshore systems under stochastic variations. Ocean Engineering, 340. https://doi.org/10.1016/j.oceaneng.2025.122232

Diem, N. D., van Dat, P., & Hien, T. D. (2025). Analysis of Beams with a Three-dimensional Random Field of the Modulus of Elasticity Using the Stochastic Finite Element Method. International Journal of Mathematical, Engineering and Management Sciences, 10(5), 1518–1538. https://doi.org/10.33889/IJMEMS.2025.10.5.072

Elbashbishy, T., & El-adaway, I. H. (2026). Assessing the Criticality of Construction Trades: Skilled Labor Shortages and Their Cost and Schedule Impacts. Journal of Construction Engineering and Management, 152(1). https://doi.org/10.1061/JCEMD4.COENG-16261

Enayati, J., Asef, P., & Benoit, A. (2025). A hybrid Artificial Intelligence method for estimating flicker in power systems. Energy and AI, 22. https://doi.org/10.1016/j.egyai.2025.100614

Galmacci, T., Fantaccione, L., Luzi, F., Verlezza, G., Ragni, G., & Fantozzi, F. (2025). How Accurate is Your Carbon Footprint? Measuring the Uncertainty with Pedigree Matrix in the Design of an Oxyfuel Combustion Gas Turbine. Journal of Engineering for Gas Turbines and Power, 147(12). https://doi.org/10.1115/1.4069460

Garces, D., & Gil, S. (2025). Pro-routing: Proactive routing of autonomous multi-capacity robots for pickup-and-delivery tasks. Robotics and Autonomous Systems, 194. https://doi.org/10.1016/j.robot.2025.105138

Ge, L., Liu, H., Du, N., Sun, G., Meng, T., Li, L., & Song, S. (2026). Sensorless Control of Switched Reluctance Motor Based on Improved Particle Filter. IEEE Transactions on Industrial Electronics, 73(1), 275–283. https://doi.org/10.1109/TIE.2025.3595962

Germanos, M., Ben-Ammar, O., & Zacharewicz, G. (2026). A rolling horizon framework for supplier selection and order allocation: a case study on smallholder agricultural supply chain. International Journal of Food Engineering, 22(1), 37–50. https://doi.org/10.1515/ijfe-2025-0031

Gu, M., Zhang, P., Chang, R., Boh, W., & Huo, B. (2026). The Impact of Blockchain Implementation on Received and Provided Trade Credit. IEEE Transactions on Engineering Management, 73, 467–480. https://doi.org/10.1109/TEM.2025.3640643

Hou, B., Zhou, B., & Wu, S. (2025). Optimal Design of Water Distribution Network Considering the Uncertainty and Correlation of Nodal Demands. Water Resources Management, 39(11), 5555–5573. https://doi.org/10.1007/s11269-025-04216-4

Khan, F. T., Alif, K. M. O., Chowdhury, A., Huda, A. S. N., & Rabbani, A. (2026). Probabilistic financial modeling and EFAST based sensitivity analysis of industrial rooftop solar photovoltaic systems. Results in Engineering, 29. https://doi.org/10.1016/j.rineng.2026.109269

Kim, B.-K., Hyun, J.-S., Kim, Y. H., Ryu, J.-H., Segu, D. Z., & Kang, S.-W. (2023). Effect of Boundary Layer Modification and Enhanced Thermal Characteristics on Tribological Performance of Alumina Nanofluids Dispersed in Lubricant Oil. Experimental Techniques, 47(3), 737–746. https://doi.org/10.1007/s40799-022-00588-z

Kim, S. H., & Kim, Y. S. (2026). Quantitative analysis of schedule impact due to design changes in finishing construction work: (A case study of office buildings). KSCE Journal of Civil Engineering, 30(2). https://doi.org/10.1016/j.kscej.2025.100362

Li, Y., Xu, M., & Zhao, P. (2026). Dependence-aware modeling of multi-tenant attacks in cloud systems. Reliability Engineering and System Safety, 266. https://doi.org/10.1016/j.ress.2025.111750

Lindsley, B., Kraus, N., & McQuaig, K. (2022). Iron-Based Powder Solutions For Soft Magnetic Composite Applications. https://www.scopus.com/inward/record.uri?eid=2-s2.0-85160689482&partnerID=40&md5=fb421f6bc0585f0ec0c2caab35529ad1

Liu, L., Ni, C., Wang, Y., Zhao, T., & Zhu, J. (2025). Research Progress of Tribological Properties of Titanium Alloy Based on Surface Micro-texture. Surface Technology, 54(2), 52–69. https://doi.org/10.16490/j.cnki.issn.1001-3660.2025.02.004

Malik, J., Raja, R., Pawar, P. M., & Mukherjee, M. (2026). Cyber risk quantification for adversarial machine learning attacks. Computers and Electrical Engineering, 131. https://doi.org/10.1016/j.compeleceng.2026.110964

Mancusi, F., Bochicchio, A., Laforgia, A., & Fruggiero, F. (2025). Sustainability-Aware Maintenance for Machine Tools: A Quantitative Framework Linking Degradation Management with Life-Cycle Cost and Environmental Performance. Applied Sciences (Switzerland), 15(21). https://doi.org/10.3390/app152111333

Mateus, R. J. G., Assis, R., Carmona Marques, P., Martins, A. D. B., Rodrigues, J. C. A., & Pinto, F. S. (2026). An Integrated Risk-Informed Multicriteria Approach for Determining Optimal Inspection Periods for Protective Sensors. Sensors, 26(1). https://doi.org/10.3390/s26010213

Minarifam, G., & Asadi, P. (2025). Stochastic linearization technique for bilinear hysteretic structures equipped with tuned liquid column dampers. Structures, 79. https://doi.org/10.1016/j.istruc.2025.109464

Mo, Y., Kong, L., Shen, Y., Zhang, Y., Zeng, B., Xiao, J., Kang, M., & Zhu, G. (2025). Meteorological, behavioural and social determinants in HFMD transmission: a modelling study in Guangzhou, China. Journal of the Royal Society Interface, 22(232). https://doi.org/10.1098/rsif.2025.0337

Ni, P., Lei, F., Zheng, H., Song, J., Yue, Y., Zhang, X., Yan, Z., & Qin, G. (2025). Potential and challenges of urban building surface solar energy utilization in solar resource non-enriched areas, China. Energy, 332. https://doi.org/10.1016/j.energy.2025.137163

Ouzaroual, L., El-Fdil, R., Sabbah, H., Fadil, Z., Salmani, E., Mahmoud, K. H., Alsayyari, A. A., Raorane, C. J., & Kim, S.-C. (2025). Compensation temperature and reentrant magnetization in 2D hexagonal mixed-spin systems: A Monte Carlo study. Physica B: Condensed Matter, 718. https://doi.org/10.1016/j.physb.2025.417896

Peixoto, T. P. (2025). Uncertainty quantification and posterior sampling for network reconstruction. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 481(2325). https://doi.org/10.1098/rspa.2025.0344

Petrović, P., & Mijailović, V. (2025). Incremental/decremental memristor utilizing solely a voltage controlled second-generation current conveyor. Integration, 105. https://doi.org/10.1016/j.vlsi.2025.102528

Semmelmann, L., Kimbrough, S. O., & Staudt, P. (2026). Aggregator electricity price guarantees for households with flexibility potential utilizing thermal building inertia. Applied Energy, 409. https://doi.org/10.1016/j.apenergy.2026.127430

Sharbaf, S. A., Lolli, N., Andresen, I., & Schneider-Marin, P. (2025). A framework for identifying influential factors in cost-benefit analysis of building-applied photovoltaics systems. Applied Energy, 400. https://doi.org/10.1016/j.apenergy.2025.126542

Singh, M., Dixit, A. R., Sharma, A. K., Nag, A., & Hloch, S. (2025). Real-Time Adaptive Nanofluid-Based Lubrication in Stainless Steel Turning Using an Intelligent Auto-Tuned MQL System. Materials, 18(20). https://doi.org/10.3390/ma18204714

Song, G., Li, C., Hua, C., Lv, G., Lu, H., & Cao, S. (2026). Thermal network modeling and analysis of bi-directional sliding guide system for CNC machine tools. Mechanical Systems and Signal Processing, 242. https://doi.org/10.1016/j.ymssp.2025.113629

Tatsumi, H., Matsubara, K., & Nakahara, Y. (2023). Trends in Evaluation Methods of Oil Cooling Performance for Battery and Motor of Electric Vehicles. Toraibarojisuto/Journal of Japanese Society of Tribologists, 68(2), 98–104. https://doi.org/10.18914/tribologist.68.02_98

Therapontos, P., Panagi, S., Konstantinou, R., Charalambous, C. A., & Aristidou, P. (2026). Increasing the RES Hosting Capacity of the Cyprus Distribution System Focusing on Export Limitation Schemes. IET Generation, Transmission and Distribution, 20(1). https://doi.org/10.1049/gtd2.70207

Wang, J., Kouki, M., Ali Pasha, A. A., Nayak, M. K., Algarni, S., Alqahtani, T., & Irshad, K. (2024). Buoyancy-driven micropolar ternary hybrid nano-suspension within an oblique incinerator-shaped chamber: Thermal and second law analyses. Case Studies in Thermal Engineering, 61. https://doi.org/10.1016/j.csite.2024.105012

Yan, C.-Z., Zhang, Z.-Y., Li, C.-Y., Wu, S.-H., Liu, Y., & Han, X. (2025). Highly Durable Antifouling Performance of Amphiphobic and Slippery Coatings with PFPE-Stored POTS-MSNs@PVDF. Langmuir, 41(16), 10394–10407. https://doi.org/10.1021/acs.langmuir.5c00304

Zhang, Z., Wen, K., Gong, H., Wang, Y., Zhao, L., Wang, D., & Gong, Z. (2025). Regional disparities and provincial peak trajectories of transportation carbon emissions in Western China. Transportation Research Part D: Transport and Environment, 149. https://doi.org/10.1016/j.trd.2025.105062

Downloads

Published

2026-01-20

How to Cite

Nasution, R. A. D., Pramana, Y., Lubis, H. F., Hasibuan, R. R., & Anwar, K. (2026). Optimasi Persediaan Toko Mainan Menggunakan Simulasi Monte Carlo untuk Menghadapi Ketidakpastian Permintaan Musiman. Jurnal Teknik Industri Terintegrasi (JUTIN), 9(1), 1188–1197. https://doi.org/10.31004/jutin.v9i1.55900

Issue

Section

Articles of Research

Similar Articles

<< < 4 5 6 7 8 9 10 11 12 13 > >> 

You may also start an advanced similarity search for this article.