Perbandingan Sifat Mekanis Material Logam dalam Industri Manufaktur

Authors

  • Dian Ayu Aulia Zandroto Department of Industrial Engineering, University of Al Azhar Medan, Indonesia
  • Raihan Deprija Naim Department of Industrial Engineering, University of Al Azhar Medan, Indonesia
  • Ibnu Azmi Riawan Department of Industrial Engineering, University of Al Azhar Medan, Indonesia

DOI:

https://doi.org/10.31004/jutin.v9i1.55283

Keywords:

Innovative materials, automotive industry, fiber-reinforced composites, high-strength steel, aluminum alloys

Abstract

This research aims to analyze the mechanical properties of metal materials produced using various manufacturing techniques, both conventional and additive manufacturing (AM) technologies such as SLM, WAAM, and EBM. The main focus of this study is to evaluate the influence of microstructure and porosity on the tensile strength, stiffness, ductility, and fatigue resistance of these materials. The research method used is a comparative experimental study, collecting data from the latest literature and laboratory test results on materials such as high-strength steel, aluminum alloys, and composites. Research findings indicate that the use of innovative materials can improve production efficiency and vehicle performance, with some AM materials exhibiting higher strength despite a sacrifice in flexibility. The recommendation for this research is to optimize material selection based on application and more efficient manufacturing processes.

References

Abdelaal, A. F., Chakrobarty, A., Sakib, N., Mustafi, A., & Haque, E. (2025). Porosity , residual stress , wear properties and impact toughness of additively manufactured low-alloy steel : A review. Next Materials, 9(October), 101288. https://doi.org/10.1016/j.nxmate.2025.101288

Abidin, A. A., Hasrudy, Z., Muharni, R., & Nugroho, D. H. (2025). Dasar-Dasar Teknik Mesin (First Edit). CV Pustaka Buku Nusantara.

Akbari, P., Zamani, M., & Mostafaei, A. (2024). Machine learning prediction of mechanical properties in metal additive manufacturing. Additive Manufacturing, 91(July), 104320. https://doi.org/10.1016/j.addma.2024.104320

Armstrong, M., Mehrabi, H., & Naveed, N. (2022). An overview of modern metal additive manufacturing technology. Journal of Manufacturing Processes, 84(September), 1001–1029. https://doi.org/10.1016/j.jmapro.2022.10.060

Baris, S., Ipek, R., Baris, S. T., & Baris, I. (2026). Expanding the Phenotypic Spectrum of NDUFS6-Related Disease : From Neonatal Mitochondrial Encephalopathy to Childhood-Onset Axonal Neuropathy. International Journal of Molecular Sciences, 27, 1375. https://doi.org/https://doi.org/10.3390/ijms27031375

Candela, A., Sandrini, G., Gadola, M., Chindamo, D., & Magri, P. (2024). Heliyon Lightweighting in the automotive industry as a measure for energy efficiency : Review of the main materials and methods. Heliyon, 10(8), e29728. https://doi.org/10.1016/j.heliyon.2024.e29728

Hasan, R., Govindaraj, P., Salim, N., Antiohos, D., Konstantin, F., & Hameed, N. (2025). Digitalization of composite manufacturing using nanomaterials based piezoresistive sensors. Composites Part A, 188(September 2024), 108578. https://doi.org/10.1016/j.compositesa.2024.108578

Hosseini, Faezeh, & Asad, A. (2024). Microstructure Characterization and Mechanical Properties of Al6061 Alloy Fabricated by Laser Powder Bed Fusion. Journal of Manufacturing and Materials Processing, 8, 288. https://doi.org/https://doi.org/10.3390/jmmp8060288

Huangfu, B. (2024). Anisotropy of Additively Manufactured Metallic Materials. Materials, 17, 3653. https://doi.org/https://doi.org/10.3390/ma17153653

Jadhav, S., Kusekar, S., Belure, A., & Digole, S. (2025). Recent Progress and Scientific Challenges in Wire-Arc Additive Manufacturing of Metallic Multi-Material Structures. 1–56. https://doi.org/https://doi.org/10.3390/jmmp9080284

Khan, F., Hossain, N., Jannat, J., Maksudur, S. M., & Iqbal, J. (2025). Advances of composite materials in automobile applications – A review. Journal of Engineering Research, 13(February 2024), 1001–1023. https://doi.org/10.1016/j.jer.2024.02.017

Kim, J., Kim, J., & Pyo, C. (2020). Comparison of Mechanical Properties of Ni-Al-Bronze Alloy Fabricated through Wire Arc Additive Manufacturing with Ni-Al-Bronze Alloy Fabricated through Casting. Metals, 10, 1164. https://doi.org/https://doi.org/10.3390/met10091164

Liu, Q., Chen, W., Yakubov, V., Kruzic, J. J., Wang, C. H., & Li, X. (2024). Interpretable machine learning approach for exploring process-structure-property relationships in metal additive manufacturing. Additive Manufacturing, 85(February), 104187. https://doi.org/10.1016/j.addma.2024.104187

Love, A., Alejandro, O., Pastrana, V., Behseresht, S., & Park, Y. H. (2025). Advancing Metal Additive Manufacturing: A Review of Numerical Methods in DED, WAAM, and PBF. Metrology, 5, 30. https://doi.org/https://doi.org/10.3390/metrology5020030

Phiri, R., Mavinkere, S., & Siengchin, S. (2024). Heliyon Advances in lightweight composite structures and manufacturing technologies : A comprehensive review. Heliyon, 10(21), e39661. https://doi.org/10.1016/j.heliyon.2024.e39661

Putera, Akmarul, D., & Fajri, N. (2025). Advancing Electric Vehicle Safety and Adoption in Indonesia: Insights from Global and Local Perspectives. Engineering Proceedings, 84, 52. https://doi.org/https://doi.org/10.3390/engproc2025084052

Qiram, I. (2025). JEEE : Journal of Educational Engineering and Environment. Journal of Educational Engineering and Environment, 4(May), 5–9. https://doi.org/https://doi.org/10.3390/jmmp9120396

Risaliti, E., Pero, F. Del, Arcidiacono, G., & Citti, P. (2025). Optimizing Lightweight Material Selection in Automotive Engineering : A Hybrid Methodology Incorporating Ashby ’ s Method and VIKOR Analysis. Machines, 13(63), 63. https://doi.org/10.3390/machines13010063

Schino, Di, A., & Testani, C. (2023). Microstructure and Properties in Metals and Alloys. Metals, 13, 1320. https://doi.org/https://doi.org/10.3390/met13071320

Siregar, Z. H., Nasution, Mawardi, Fadillah, A., Suherman, & Refiza. (2025). Evaluasi Kritis dan Model Alternatif Hunter Curves untuk Sistem Plumbing Gedung Bertingkat di Medan. 11(2), 205–217.

Siregar, Z. H., Siregar, R., Prinsi Rigitta, N., Puspita, R., Refiza, Zurairah, M., Purba, I. G., & Tanjung, J. H. S. (2024). Pengembangan Aliran Sungai Sebagai Potensi Pembangkit Listrik Mikro Hidro Serta Edukasi dan Akulturasi di Desa Meranti Tengah Dusun Batu Rangin Kecamatan Pintu Pohan Meranti Kabupaten Tobasa. Jurnal Deputi, 4(1), 264–269. https://doi.org/10.54123/deputi.v4i1.325

Zhang, S., Soltani, H., Pavan, K., Ajjarapu, K., & Ghasemimotlagh, S. (2025). Additive Manufacturing of 6061 Aluminum by Filament-Based Material Extrusion (MEX): Process Development and Mechanical Characterization. Journal of Manufacturing and Materials Processing, 9, 396. https://doi.org/https://doi.org/10.3390/jmmp9120396

Zhang, Wen, & Xu, J. (2022). Materials & Design Advanced lightweight materials for Automobiles : A review. Materials & Design, 221, 110994. https://doi.org/10.1016/j.matdes.2022.110994

Zhang, Z., Yu, C., Ren, G., Shen, S., & Yi, H. (2025). Laser Additive Manufacturing of Three-Dimensional Porous Structures: Structural Design, Microstructure, Mechanical Properties, and Applications. 36(January), 3684–3725. https://doi.org/https://doi.org/10.1016/j.jmrt.2025.04.003

Zhou, L., Miller, J., Vezza, J., Mayster, M., Raffay, M., Justice, Q., Tamimi, Z. Al, Hansotte, G., Sunkara, L. D., & Bernat, J. (2024). Additive Manufacturing: A Comprehensive Review. Sensors, 24, 2668. https://doi.org/https://doi.org/10.3390/s24092668

Downloads

Published

2026-01-20

How to Cite

Zandroto, D. A. A., Naim, R. D., & Riawan, I. A. (2026). Perbandingan Sifat Mekanis Material Logam dalam Industri Manufaktur. Jurnal Teknik Industri Terintegrasi (JUTIN), 9(1), 988–997. https://doi.org/10.31004/jutin.v9i1.55283

Issue

Section

Articles of Research

Similar Articles

<< < 6 7 8 9 10 11 12 13 14 15 > >> 

You may also start an advanced similarity search for this article.