Development of Conductive Polymer-Based Materials for Flexible Integrated Electronic Applications

Authors

  • Adrian Maulana University of Al Azhar Medan
  • M Habil Rifanza University of Al Azhar Medan
  • Jefri Saidi Rambe University of Al Azhar Medan

DOI:

https://doi.org/10.31004/jutin.v9i1.54919

Keywords:

Conductive Polymers, Flexible Electronics, Composite Materials, Electronic Device Integration, Environmentally Friendly, Fabrication

Abstract

As electronic devices become more common, EMI is turning into a bigger issue. Conductive polymer composites are considered promising because they are lightweight, resistant to corrosion, easy to shape, and stable. Adding conductive fillers such as graphene, MXene, carbon fibers, or certain metals can further improve their ability to block EMI and conduct heat and electricity. These materials are very thin, but they can block sounds louder than 80 dB. 3D printing and template fabrication are two new ways of making things that allow you to create strong and flexible conductive networks with little filler. However, there are still some issues that need to be addressed, such as how to distribute the filler evenly, control the microstructure, and keep the polymer-filler interface dense. Some proposed improvements are to modify the interface, mix different types of fillers, and build structures that are porous or have more than one layer. If designed and manufactured correctly, these conductive polymer composites can be used in flexible electronics, wearable devices, and next-generation thermal management systems

References

Abidin, A. A., Hasrudy, Z., Muharni, R., & Nugroho, D. H. (2025). Dasar-Dasar Teknik Mesin (First Edit). CV Pustaka Buku Nusantara.

Ahmad, F., Saputra, D. K., Apriliana, M., Abibah, L., & Abidin, N. (2025). Indonesian Journal of Pure and Applied Chemistry SINTESIS , KARAKTERISASI , DAN APLIKASI POLIANILIN SEBAGAI POLIMER KONDUKTIF DALAM TEKNOLOGI MODERN : A REVIEW ( SYNTHESIS , CHARACTERIZATION , AND APPLICATIONS OF POLYANILINE AS A CONDUCTIVE POLYMER IN MODERN TECHNOLOGIES : A REVIEW ). 8(2), 66–90.

Ahmed, R., Maio, L., & Potluri, P. (2025). Progress in Aerospace Sciences Graphene-enhanced epoxy composites : A comprehensive review of dispersion mechanisms , processing strategies , property optimization , characterization and sustainable innovations. Progress in Aerospace Sciences, 158(April), 101142. https://doi.org/10.1016/j.paerosci.2025.101142

Ali, S. M., Noghanian, S., Khan, Z. U., Alzahrani, S., & Alharbi, S. (2025). Wearable and Flexible Sensor Devices : Recent Advances in Designs , Fabrication Methods , and Applications. 1–43.

Choudhary, M., Sharma, A., Raj, S. A., Sultan, M. T. H., Hui, D., & Md Shah, A. U. (2022). Contemporary review on carbon nanotube (CNT) based polymer composites. Nanotechnology Reviews, 11(1), 2632–2660. https://doi.org/10.1515/ntrev-2022-0146

Ir. Zufri Hasrudy Siregar, S.T., M.Eng., C. E. (2025). Pengantar Teknik Mesin dan Industri (Edisi Pert). Yayasan Tri Edukasi Ilmiah Komplek Delta Emporio No.227, Jalan Raya Pakan Kamis, Gadut, Tilatang Kamang, Kab. Agam, Sumatera Barat.

Jovanović, S., Huskić, M., Kepić, D., Yasir, M., & Haddadi, K. (2023). A review on graphene and graphene composites for application in electromagnetic shielding. Graphene and 2D Materials, 8(3), 59–80. https://doi.org/10.1007/s41127-023-00065-3

Khan, M., Srivastava, R., & Kavita, D. (2023). Study on Conductive Polymer Films for Flexible Electronic Devices. 2(2), 302–310. https://doi.org/10.55544/jrasb.2.2.42

Liu, J., Zhai, H., Li, J., Li, Y., & Liu, Z. (2024). Wearable Electronics. Enhancing wearable electronics through thermal management innovations, 1(August), 160–179. https://doi.org/10.1016/j.wees.2024.07.005

Olamide, B., Ogbeyemi, A., Awais, M., Song, K., & Chris, W. (2025). Sensors and Actuators : A . Physical Towards robust flexible electronics : Fabrication approaches and ongoing research challenges. Sensors and Actuators: A. Physical, 395(June), 117053. https://doi.org/10.1016/j.sna.2025.117053

Parvini, E. (2025). Recyclable and Binder-Free EGaIn – Carbon Liquid Metal Composite : A Sustainable Approach for High-Performance Stretchable Electronics , Thermal-Interfacing and. https://doi.org/10.1002/admt.202502405

Pascual, D., M., A., Rahdar, & Abbas. (2022). Graphene-Based Polymer Composites for Flexible Electronic Applications. Micromachines, 13(7), 1–18. https://doi.org/10.3390/mi13071123

Shahid, A., Rahman, M., Hossain, T., & Hossain, I. (2025). Advances in Conductive Polymer-Based Flexible Electronics for Multifunctional Applications. 1–34.

Shahid, M. A., Rahman, M. M., Hossain, M. T., Hossain, I., Sheikh, M. S., Rahman, M. S., Uddin, N., Donne, S. W., & Hoque, M. I. U. (2025). Advances in Conductive Polymer-Based Flexible Electronics for Multifunctional Applications. Journal of Composites Science, 9(1), 1–34. https://doi.org/10.3390/jcs9010042

Siregar, Z. H., Siregar, R., Prinsi Rigitta, N., Puspita, R., Refiza, Zurairah, M., Purba, I. G., & Tanjung, J. H. S. (2024). Pengembangan Aliran Sungai Sebagai Potensi Pembangkit Listrik Mikro Hidro Serta Edukasi dan Akulturasi di Desa Meranti Tengah Dusun Batu Rangin Kecamatan Pintu Pohan Meranti Kabupaten Tobasa. Jurnal Deputi, 4(1), 264–269. https://doi.org/10.54123/deputi.v4i1.325

Tawsif, H., Farzana, M., Nowroj, I., & Bin, A. (2025). Biosensors and Bioelectronics : X Conductive polymer composites in soft robotics , flexible sensors and energy storage : Fabrication , applications and challenges. Biosensors and Bioelectronics: X, 24(November 2024), 100597. https://doi.org/10.1016/j.biosx.2025.100597

Wang, F., Heaton, C. E. D., Cottam, N. D., Austin, J. S., Im, J., Fromhold, T. M., Wildman, R. D., Hague, R. J. M., & Tuck, C. J. (2025). Inkjet Printed Multifunctional Graphene Sensors for Flexible and Wearable Electronics. Advanced Electronic Materials, 11, 1–8. https://doi.org/10.1002/aelm.202400689

Xia, M., & Shi, Q. (2024). Topic Editorial on Flexible Electronics. Topic Editorial on Flexible Electronics, 15(11), 1350. https://doi.org/10.3390/mi15111350

Xu, J., & Gu, H. (2025). Synthesis and applications of silver nanowires. ISCIENCE, 28(12), 114135. https://doi.org/10.1016/j.isci.2025.114135

Zhang, Z. (2024). A Review of the Establishment of Effective Conductive Pathways of Conductive Polymer Composites and Advances in Electromagnetic Shielding.

Zhao, D., Jia, W., Feng, X., Yang, H., Xie, Y., Shang, J., Wang, P., Guo, Y., & Li, R. (2024). Flexible Sensors Based on Conductive Polymer Composites.

Downloads

Published

2026-01-20

How to Cite

Maulana, A., Rifanza, M. H., & Rambe, J. S. (2026). Development of Conductive Polymer-Based Materials for Flexible Integrated Electronic Applications . Jurnal Teknik Industri Terintegrasi (JUTIN), 9(1), 958–964. https://doi.org/10.31004/jutin.v9i1.54919

Issue

Section

Articles of Research

Similar Articles

1 2 3 4 5 6 7 8 9 > >> 

You may also start an advanced similarity search for this article.