Material Paduan Berbasis Aluminida untuk Aplikasi Suhu Tinggi di Sektor Penerbangan dan Luar Angkasa

Authors

  • Yunita Umara Universitas Al Azhar Medan
  • Ilham Rizki Universitas Al Azhar Medan, Indonesia
  • Natasya Putri Cahaya Universitas Al Azhar Medan, Indonesia

DOI:

https://doi.org/10.31004/jutin.v9i1.54630

Keywords:

Aerospace, Aluminide, Aviation, High-temperature Material, Metal alloy

Abstract

This research focuses on the development of aluminide-based alloy materials for high-temperature applications in the aviation and aerospace sectors. Aluminide alloys, such as TiAl and NiAl, are known for their excellent oxidation resistance and mechanical properties at high temperatures, but still face challenges regarding toughness at room temperature. This research aims to optimize alloy composition and manufacturing methods, particularly through additive manufacturing approaches, to enhance material performance under extreme conditions. The methods used include alloy composition design, fabrication using powder metallurgy and additive manufacturing, as well as mechanical property and oxidation resistance testing. The research results indicate that the addition of alloying elements such as Nb and Mo can improve oxidation resistance and microstructural stability at high temperatures. This research also contributes to the development of the material research ecosystem in Indonesia and can support self-reliance in the production of high-temperature materials for the aviation and aerospace sectors.

References

Aritonang, S., & Murniati, R. (2024). Material Pertahanan (M. S. Dr. Ir. Sovian Aritonang, S.Si. & M. S. Dr. Riri Murniati, S.Si. (eds.)). CV. Aksara Global Akademia.

Authors: M. Krasniqi, F. L. (2024). Comprehensive study on statistical methods for optimization of process parameters and material properties of AlSi10Mg in laser powder bed fusion. Discover Mechanical Engineering, 3(1). https://doi.org/10.1007/s44245-024-00073-4

Bünck, M., Salber, R., & Stoyanov, T. (2024). Resource-Efficient Manufacturing Technology for Titanium Aluminide Aerospace Components. Transactions of the Indian National Academy of Engineering, 9(1), 141–154. https://doi.org/10.1007/s41403-023-00436-5

Hadining, W. N., & Basuki, E. A. (2023). Pengaruh Pelapisan Aluminida Paduan Ti-47Al-2Nb-2Cr-0,5Zr-0,5Y terhadap Oksidasi Siklik pada Temperatur 900, 1000, dan 1100°C. Journal of Metallurgical Engineering and Processing Technology, 3(2), 146. https://doi.org/10.31315/jmept.v3i2.8582

Ir. Zufri Hasrudy Siregar, S.T., M.Eng., C. E., Azhar Aras Mubarak, S.T., M. T., Yuvita Satriani Djuli, S.T., M. T., Hery Irwan, S.T., M.T., P. D., Dr. Ir. M. Ansyar Bora, S.T, M.T., I., Dr. Ir. Abdullah Merjani, S.T., M. T., Ir. Aulia Agung Dermawan, M. T., Fahriadi Pakaya, M. T., & Firman Edi, S.T., M. T. (2025). Pengantar Teknik Mesin dan Industri. Yayasan Tri Edukasi Ilmiah.

Kopec, M. (2024a). Effect of Aluminide Coating Thickness on High-Temperature Fatigue Response of MAR-M247 Nickel-Based Superalloy. Coatings, 14(8). https://doi.org/10.3390/coatings14081072

Kopec, M. (2024b). Recent Advances in the Deposition of Aluminide Coatings on Nickel-Based Superalloys: A Synthetic Review (2019–2023). Coatings, 14(5), 1–15. https://doi.org/10.3390/coatings14050630

Kulkarni, A., Srinivasan, D., Ravanappa, P., Jayaram, V., & Kumar, P. (2023). Creep behavior of additively manufactured high strength A205 aluminum alloy. Additive Manufacturing Letters, 6(April), 100142. https://doi.org/10.1016/j.addlet.2023.100142

Kumar, R., Singh Raman, R. K., Bakshi, S. R., Raja, V. S., & Parida, S. (2024). Exploring the Influence of Nanocrystalline Structure and Aluminum Content on High-Temperature Oxidation Behavior of Fe-Cr-Al Alloys. Materials, 17(7). https://doi.org/10.3390/ma17071700

Li, Y., Dai, J., & Song, Y. (2021). Research Progress of First Principles Studies on Oxidation Behaviors of Ti-Al Alloys and Alloying Influence. Metals, 11(6). https://doi.org/10.3390/met11060985

Polozov, I., Sokolova, V., Gracheva, A., & Popovich, A. (2023). Tailoring the Microstructure of Laser-Additive-Manufactured Titanium Aluminide Alloys via In Situ Alloying and Parameter Variation. Metals, 13(8). https://doi.org/10.3390/met13081429

Schulze, L., Tóth, T., Beverförden, J., Hilbig, K., Vietor, T., & Dilger, K. (2025). Influence of Manufacturing Parameters on Mechanical Properties and Porosity of Additive-Manufactured and TIG-Welded AlSi10Mg Components. Journal of Manufacturing and Materials Processing, 9(11), 1–21. https://doi.org/10.3390/jmmp9110366

Siregar, Z. H., Jufrizal, Hasanah, M., & Muhammad Dendy Agusdiandy. (2022). Pengaruh Variasi Temperatur Sumber Panas Terhadap Temperatur Udara Dalam Heater Mesin Stirling. IRA Jurnal Teknik Mesin Dan Aplikasinya (IRAJTMA), 1(1), 11–16. https://doi.org/10.56862/irajtma.v1i1.1

Siregar, Z. H., Mawardi, M., Ramadhan, A., Rigitta, P., Simorangkir, S. P., & Harahap, D. S. (2024). Analisis Impak Tegangan dan Regangan pada Spesimen Batang Marka Jalan Menggunakan Air Gun Compressor. G-Tech: Jurnal Teknologi Terapan, 8(1), 396–407. https://doi.org/10.33379/gtech.v8i1.3787

Trianah, M., Wijaya Saputra, D., & Irnaninsih, S. (2024). Pengaruh Sejarah Perkembangan Alat Transportasi Darat, Laut, dan Udara di Indonesia serta Dampaknya terhadap Masyarakat. Seminar Nasional Pendidikan, 2584–2592. https://jurnal.umj.ac.id/index.php/SEMNASFIP/article/view/24066

Utama, B. D. (2021). Perkembangan Industri Penerbangan Dan Pertumbuhan Ekonomi Di Indonesia. Jurnal Ilmu Pemerintahan Suara Khatulistiwa, 6(2), 213–223. https://doi.org/10.33701/jipsk.v6i2.1901

Wang, L., Shen, C., Zhang, Y., Li, F., Zhou, W., Zhang, D., Wu, K., Ruan, G., Ding, Y., Li, Y., Li, H., & Hua, X. (2025). Materials & Design Defects , microstructure and properties in additive manufacturing of TiAl alloys : Formation mechanisms , influencing factors and improvement strategies. Materials & Design, 256(April), 114235. https://doi.org/10.1016/j.matdes.2025.114235

Wei, Y., Miao, B., Shu, S., Yang, H., & Zhong, X. (2025). Opening the future of lightweight : Research progress in additive manufacturing of TiAl alloys. Journal of Materials Research and Technology, 39(5988), 5391–5414. https://doi.org/10.1016/j.jmrt.2025.10.162

Downloads

Published

2026-01-20

How to Cite

Umara, Y., Rizki, I., & Cahaya, N. P. (2026). Material Paduan Berbasis Aluminida untuk Aplikasi Suhu Tinggi di Sektor Penerbangan dan Luar Angkasa. Jurnal Teknik Industri Terintegrasi (JUTIN), 9(1), 799–808. https://doi.org/10.31004/jutin.v9i1.54630

Issue

Section

Articles of Research

Similar Articles

<< < 1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.