Peran Material Lokal Bambu dan Batu Padas Dalam Sistem Konstruksi Villa Ramah Lingkungan
DOI:
https://doi.org/10.31004/jutin.v9i1.54221Keywords:
Bamboo, Sustainable Materials, Green Construction, Carbon EmissionsAbstract
The global construction sector contributes significantly to greenhouse gas emissions, accounting for approximately 32–34% of total global emissions. In Indonesia, the construction industry has been growing at an annual rate of 6.4–7.5%, increasing the demand for sustainable building materials. This study aims to evaluate the structural feasibility and sustainability of bamboo (Dendrocalamus asper) and sandstone as building materials through a synthesis of published laboratory data and conceptual design analysis. The results indicate that bamboo exhibits high mechanical strength that meets and exceeds minimum structural standards, while sandstone demonstrates adequate compressive strength and superior thermal insulation performance compared to conventional concrete. The integrated application of both materials in a 52 m² conceptual villa design resulted in a 49.4% reduction in embodied carbon and an 8.2% reduction in construction costs. The use of hybrid bamboo–steel connections further enhances seismic resistance and structural integrity. These findings confirm that bamboo and sandstone are viable, sustainable, and efficient local material alternatives for residential construction in tropical regions.References
Abdelfattah, M. M., Géber, R., & Kocserha, I. (2023). Enhancing the properties of lightweight aggregates using volcanic rock additive materials. Journal of Building Engineering, 63, 105426.
Adier, M. F. V., Sevilla, M. E. P., Valerio, D. N. R., Ongpeng, J. M. C., Adier, M. F. V., Sevilla, M. E. P., Valerio, D. N. R., & Ongpeng, J. M. C. (2023). Bamboo as Sustainable Building Materials: A Systematic Review of Properties, Treatment Methods, and Standards. Buildings, 13(10). https://doi.org/10.3390/buildings13102449
Aldersoni, A. abdulmohsen, Ibrahim, A. O., Aldamady, A. A. H., Bashir, F. M., Babatunde, O. E., Dodo, Y. A., & Ibrahim, W. (2025). Investigating the impact of low-carbon building materials on energy consumption and carbon emissions in construction projects. International Journal of Low-Carbon Technologies, 20, 1581–1592.
De La Cruz, M., Lopez, L., De Jesus, R., & Garciano, L. (2020). Assessment of testing protocols for bamboo for tension parallel to fiber. GEOMATE Journal, 19(74), 31–36.
Gibson, L. J. (2012). The hierarchical structure and mechanics of plant materials. Journal of The Royal Society Interface, 9(76), 2749–2766. https://doi.org/10.1098/rsif.2012.0341
Habieb, A. B., Rofiussan, F. A., Irawan, D., Milani, G., Suswanto, B., Widodo, A., & Soegihardjo, H. (2023). Seismic retrofitting of Indonesian masonry using bamboo strips: An experimental study. Buildings, 13(4), 854.
Heap, M. J., Kushnir, A. R., Vasseur, J., Wadsworth, F. B., Harlé, P., Baud, P., Kennedy, B. M., Troll, V. R., & Deegan, F. M. (2020). The thermal properties of porous andesite. Journal of Volcanology and Geothermal Research, 398, 106901.
International Labour Organization,. (2025). Guidelines on green employment diagnostics for a just transition (2nd ed.). ILO. https://doi.org/10.54394/YVYN6180
Javadian, A., Smith, I. F., Saeidi, N., & Hebel, D. E. (2019). Mechanical properties of bamboo through measurement of culm physical properties for composite fabrication of structural concrete reinforcement. Frontiers in Materials, 6, 15.
Junianto, I., Sunardi, & Sumiarsa, D. (2023). The possibility of achieving zero CO2 emission in the Indonesian cement industry by 2050: A stakeholder system dynamic perspective. Sustainability, 15(7), 6085.
Labar, B., Bektaş, N., & Kegyes-Brassai, O. (2024). Enhancing Seismic Performance: A Comprehensive Study on Masonry and Reinforced Concrete Structures Considering Soil Properties and Environmental Impact Assessment. Advances in Civil Engineering, 2024(1), 4505901. https://doi.org/10.1155/2024/4505901
Li, X., Zhang, W., Lei, W., Ji, Y., Zhang, Z., Yin, Y., & Rao, F. (2022). Physical and mechanical properties of novel multilayer bamboo laminated composites derived from bamboo veneer. Polymers, 14(22), 4820.
Maharani, S. A., Suartika, G. A. M., & Saputra, K. A. (2021). Transformasi Elemen Rancang Bangunan Tradisional dalam Tampilan Arsitektur Bangunan Kekinian. SPACE, 8(1). https://www.academia.edu/download/101692996/39365.pdf
Pertiwi, B., & I’annah, M. A. (2025). Penggunaan Material Bambu sebagai Bahan Utama Konstruksi pada Bangunan Green Village Bali. Filosofi: Publikasi Ilmu Komunikasi, Desain, Seni Budaya, 2(1), 27–35.
Prihatmaji, Y. P., Kitamori, A., & Komatsu, K. (2014). Traditional Javanese Wooden Houses (Joglo) Damaged By May 2006 Yogyakarta Earthquake, Indonesia. International Journal of Architectural Heritage, 8(2), 247–268. https://doi.org/10.1080/15583058.2012.692847
Satola, D., Röck, M., Houlihan-Wiberg, A., & Gustavsen, A. (2020). Life cycle GHG emissions of residential buildings in humid subtropical and tropical climates: Systematic review and analysis. Buildings, 11(1), 6.
Utama, A., & Gheewala, S. H. (2009). Influence of material selection on energy demand in residential houses. Materials & Design, 30(6), 2173–2180.
Van der Ree, K. (2022). Green jobs recovery through employment policies: Guidelines for shaping employment policies that support a green recovery and a just transition. ILO. https://researchrepository.ilo.org/esploro/outputs/book/Green-jobs-recovery-through-employment-policies/995218879502676
World Green Building Council. (2022). Green building: Global outlook & policy recommendation. World Green Building Council. https://worldgbc.org/
Youssefian, S., & Rahbar, N. (2015). Molecular origin of strength and stiffness in bamboo fibrils. Scientific Reports, 5(1), 11116.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2026 Aulia Muflih Nasution, Rudi Suwondoh, Mufti Ali Nasution

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

