Penentuan Rute Jakarta-Bandung pada Kendaraan Nebengers dengan menggunakan Vehicle Routing Problems with Profits

Authors

  • Fahri Anwar Universitas Negari Makassar
  • Siti Ruqaiyah Baharuddin Universitas Negeri Makassar
  • Dira Aulia Insititut Teknologi Sepuluh Nopember

DOI:

https://doi.org/10.31004/jutin.v8i4.50612

Keywords:

Vehicle Routing Problem with Profits, Rize Collecting Travelling Salesman Problem, Route optimization, heuristic algorithm, carpolling

Abstract

Traffic congestion in Indonesia, particularly on the Jakarta–Bandung route, significantly reduces mobility efficiency. Nebengers, a carpooling platform, offers an alternative solution to reduce private vehicle usage, but the drivers’ routes must be optimized to minimize travel costs. This study is a case study using the Vehicle Routing Problem with Profits (VRPP), the Prize Collecting Travelling Salesman Problem (PCTSP) model, and the heuristic nearest neighbor algorithm to determine the optimal route. The data considered include toll fees, fuel consumption, revenue from each drop-off point, and penalties for unvisited points. The results indicate that visiting all points produces a total cost of IDR 222,219, which is lower than the route with penalties (IDR 225,333). It is concluded that visiting all drop-off points is the best option to maximize profit and travel efficiency.

References

Alimi, M., Mömke, T., & Ruderer, M. (2025). Approximating Prize-Collecting Variants of TSP. Leibniz International Proceedings in Informatics, LIPIcs, 345, 1–15. https://doi.org/10.4230/LIPIcs.MFCS.2025.7

Anwar, F., Erniyani, Romadin, A., Cahyani, V. P., & Siti Ruqaiyah Baharuddin. (2025). OPTIMALISASI LINGKUNGAN KERJA PADA PROSES PERAKITAN PRODUK PADAT KARYA MENGGUNAKAN PENGUJIAN RESPONSE Jurnal Rekayasa Sistem Industri ( https://doi.org/10.33884/jrsi.v10i2.9920). Jurnal Rekayasa Sistem Industri, 10(2), 110–119.

Asirin, A., & Azhari, D. (2018). Ride-sharing business model for sustainability in developing country: Case Study Nebengers, Indonesia. IOP Conference Series: Earth and Environmental Science, 158(1). https://doi.org/10.1088/1755-1315/158/1/012053

Bhatia, N., & Vandana. (2010). Survey of Nearest Neighbor Techniques. 8(2), 302–305.

Dávila, S., Alfaro, M., Fuertes, G., Vargas, M., & Camargo, M. (2021). Vehicle routing problem with deadline and stochastic service times: Case of the ice cream industry in santiago city of chile. Mathematics, 9(21). https://doi.org/10.3390/math9212750

Halder, R. K., Uddin, M. N., Uddin, M. A., Aryal, S., & Khraisat, A. (2024). Enhancing K-nearest neighbor algorithm: a comprehensive review and performance analysis of modifications. Journal of Big Data, 11(1). https://doi.org/10.1186/s40537-024-00973-y

Komunikasi, P., Pengguna, A., Nebengers, A., Bilqis, A., Lestari, M. T., Sos, S., Pamungkas, I. N. A., Studi, P., Komunikasi, I., Komunikasi, F., & Telkom, U. (2016). ( Studi Etnografi Virtual Pada Pengguna Aplikasi Nebengers 2 . 0 Di Bandung ). 0(1), 0–4.

Kyaw, Y., & Saivichit, C. (2024). Solving Heterogeneous Fixed Fleet Vehicle Routing Problem Using Nearest Neighbor Search and 2-Opt Method. 2024 5th Technology Innovation Management and Engineering Science International Conference (TIMES-ICON), 1–5. https://doi.org/10.1109/TIMES-iCON61890.2024.10630747

Laporte, G. (1992). The traveling salesman problem: An overview of exact and approximate algorithms. European Journal of Operational Research, 59(2), 231–247. https://doi.org/10.1016/0377-2217(92)90138-Y

Lidiawati, Setiawan, H., Ramdhani, A. I., Satria, Sulistyowati, & Mukiman, K. (2023). Determining The Delivery Of Goods Using The K-Nearest Neighbor Algorithm And The Saving Matrix Method To Obtain The Optimal Route And Save Costs. 2023 International Conference on Computer Science, Information Technology and Engineering (ICCoSITE), 957–961. https://doi.org/10.1109/ICCoSITE57641.2023.10127714

Mancini, S., Gansterer, M., & Hartl, R. F. (2021). The collaborative consistent vehicle routing problem with workload balance. European Journal of Operational Research, 293(3), 955–965. https://doi.org/10.1016/j.ejor.2020.12.064

Monetization, D. A. S., Models, G., The, I. N., Project, F., & Rofifah, K. (2025). DEVELOPING A SUSTAINABLE MONETIZATION STRATEGY FOR NEBENGERS : EXPLORING REVENUE GENERATION MODELS IN THE RIDE-SHARING February 2025. 291992385(February).

Numbeo. (2025). Indices explained / Traffic Index explanation.

Paolo Toth & Daniele Vigo, Nedregård, I., Gurobi, O., Pimpler, E., LAFLAQUIERE, J., Sundar, U. M., Yang, C., Cordeau, J. F., Häll, C. H., Andersson, H., Lundgren, J. T., Värbrand, P., Posada, M., Andersson, H., & Häll, C. H. (2006). V ehicle R outing. In Public Transport (Vol. 4, Issues 1–2).

Pratiwi, M., & Lubis, R. S. (2023). Distribution Route Optimization Using Nearest Neighbor Algorithm and Clarke and Wright Savings. Sinkron, 8(3), 1638–1652. https://doi.org/10.33395/sinkron.v8i3.12622

Sanggala, E., & Bisma, M. A. (2025). Penyelesaian Capacitated Vehicle Routing Problem (CVRP) dengan Nearest Neighbour (Studi Kasus: Russian CVRP Instances). Jurnal Teknik Industri Terintegrasi, 8(3), 2586–2599. https://doi.org/10.31004/jutin.v8i3.46463

Singh, V. P., Sharma, K., & Chakraborty, D. (2023). Solving capacitated vehicle routing problem with demands as fuzzy random variable. Soft Computing, 27(21), 16019–16039. https://doi.org/10.1007/s00500-023-08888-1

Sitanggang, R., & Saribanon, E. (2018). Faktor-Faktor Penyebab Kemacetan Di Dki Jakarta. Jurnal Manajemen Bisnis Transportasi Dan Logistik, 4(3), 289–296.

Stavropoulou, F., Repoussis, P. P., & Tarantilis, C. D. (2019). The Vehicle Routing Problem with Profits and consistency constraints. European Journal of Operational Research, 274(1), 340–356. https://doi.org/10.1016/j.ejor.2018.09.046

Syahputra, B. (2017). Analisis Positioning Jasa Transportasi Travel Bandung-Jakarta Pp Berdasarkan Persepsi Pelanggan Di Kota Bandung. Jurnal Manajemen Indonesia, 14(2), 128–139. https://doi.org/10.25124/jmi.v14i2.357

Umam, M. I. H., Rizki, M., Hamzah, M. L., & Sutoyo, S. (2023). Hybrid Nearest Neighbourhood Search - Symbiotic Organisms Search for Solving Garbage Vehicle Routing Problem. AIP Conference Proceedings, 2680(1), 1–5. https://doi.org/10.1063/5.0127627

Utama, A. R., Sari, D., Bisnis, P. A., Telkom, U., Bisnis, P. A., Telkom, U., Travel, J., & Pembelian, K. (2013). Analisis Faktor-Faktor Yang Mempengaruhi Keputusan Konsumen Dalam Menggunakan Travel Cipaganti Rute Jakarta- Bandung Factors Analysis That Affecting Decision of Consumer To Use.

Wang, Z., & Wen, P. (2020). Optimization of a low-carbon two-echelon heterogeneous-fleet vehicle routing for cold chain logistics under mixed time window. Sustainability (Switzerland), 12(5). https://doi.org/10.3390/su12051967

Zhang, Z., Che, O., Cheang, B., Lim, A., & Qin, H. (2013). A memetic algorithm for the multiperiod vehicle routing problem with profit. European Journal of Operational Research, 229(3), 573–584. https://doi.org/10.1016/j.ejor.2012.11.059

Downloads

Published

2025-10-02

How to Cite

Anwar, F., Baharuddin, S. R., & Aulia, D. (2025). Penentuan Rute Jakarta-Bandung pada Kendaraan Nebengers dengan menggunakan Vehicle Routing Problems with Profits. Jurnal Teknik Industri Terintegrasi (JUTIN), 8(4), 4158–4170. https://doi.org/10.31004/jutin.v8i4.50612

Issue

Section

Articles of Research

Similar Articles

<< < 1 2 3 4 5 6 7 > >> 

You may also start an advanced similarity search for this article.