Penerapan Model ARIMA dalam Peramalan Permintaan untuk Meningkatkan Efesiensi Manajemen Persediaan pada CV Kopi Biji Palembang
DOI:
https://doi.org/10.31004/jutin.v8i4.48943Keywords:
ARIMA, Demand Forecasting, Inventory Management, Supply Chain EfficiencyAbstract
This study is motivated by unpredictable demand fluctuations at CV Kopi Biji Palembang, which often result in the risk of both overstock and stockout. The research aims to improve inventory management efficiency through the application of the ARIMA (Autoregressive Integrated Moving Average) model for coffee demand forecasting. This quantitative study utilizes six months of historical demand and inventory data, with steps including parameter identification (p,d,q), stationarity testing, and model evaluation using AIC, BIC, and MAPE. The results show that the ARIMA (1,1,1) model provides highly accurate predictions with a MAPE of 0.65%, effectively reducing overstock and stockout risks, lowering storage costs, and supporting more precise procurement planning. This study recommends integrating ARIMA forecasting results with EOQ and safety stock calculations to optimize inventory decision-making.References
Hendrik Hidayatullah, Fitri Sukaesih, Yanuar Arif Hizbulloh, & Tb Ai Munandar. (2023). Implementasi Metode Arima Data Warehouse Untuk Prediksi Permintaan Suku Cadang. Jurnal Riset Informatika Dan Teknologi Informasi, 1(1), 30–37. https://doi.org/10.58776/jriti.v1i1.48
Makridakis, S., Spiliotis, E., & Assimakopoulos, V. (2018). Statistical and Machine Learning forecasting methods: Concerns and ways forward. PLoS ONE, 13(3), 1–26. https://doi.org/10.1371/journal.pone.0194889
Mawadati, A., Wibowo, A. H., & Prima, M. A. (2023). Perencanaan Kebutuhan Baku dengan ARIMA dan EOQ. Jurnal Teknologi, 16(2), 128–136. https://doi.org/10.34151/jurtek.v16i2.4554
Rofiq, M. A., & Huda, W. S. (2019). FORECASTING PERSEDIAAN BAHAN BAKU KERTAS MENGGUNAKAN METODE AUTOREGRESSIVE INTEGRATED MOVING AVERAGE (ARIMA) di YUDHARTA ADVERTISING. JASIEK (Jurnal Aplikasi Sains, Informasi, Elektronika Dan Komputer), 1(2). https://doi.org/10.26905/jasiek.v1i2.3416
Wardah, S., Nurhasanah, N., & Sudarwati, W. (2023). Integration models of demand forecasting and inventory control for coconut sugar using the ARIMA and EOQ modification methods. Jurnal Sistem Dan Manajemen Industri, 7(2), 127–138. https://doi.org/10.30656/jsmi.v7i2.6500
Yanuar, K. T., & Mm, S. E. (2020). IMPLEMENTASI ALGORITMA ARIMA DALAM PREDIKSI PERMINTAAN PENJUALAN PT X UNTUK OPTIMASI REORDER POINT DAN ECONOMIC ORDER QUANTITY IMPLEMENTATION. 30(1), 45–64.
Anggraini, M., Goejantoro, R., & Nasution, Y. N. (2019). Peramalan Kebutuhan Bahan Baku Plat Besi Menggunakan Metode Runtun Waktu Autoregressive Integrated Moving Average (ARIMA) dan Meminimumkan Biaya Total Persediaan dari Hasil Peramalan Mengunakan Metode Period Order Quantity (POQ) (Studi Kasus: CV. Isakutam. Jurnal Eksponensial, 10(1), 1–10. http://jurnal.fmipa.unmul.ac.id/index.php/exponensial/article/view/385
Arima, A., Pengendalian, D., & Susu, P. (2024). Analisis performansi metode autoregressive integrated moving average (arima) dalam pengendalian persediaan susu. 7, 481–486. https://doi.org/10.37600/tekinkom.v7i1.1222
Catur Putri, S. R., & Junaedi, L. (2022). Penerapan Metode Peramalan Autoregressive Integrated Moving Average Pada Sistem Informasi Pengendalian Persedian Bahan Baku. Jurnal Ilmu Komputer Dan Bisnis, 13(1), 164–173. https://doi.org/10.47927/jikb.v13i1.293
Faleri, F., Sudarmaningtyas, P., & Hananto, V. R. (2023). Penerapan Metode Economic Order Quantity dan Reorder Point Pada Aplikasi Pengelolaan Persediaan Fumigasi. Journal of Applied Computer Science and Technology, 4(2), 131–140. https://doi.org/10.52158/jacost.v4i2.532
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Muhammad Gymnastiar, Andries Anwar

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

