Pengembangan Katalis Water-Gas Shift: Perspektif dari Sistem Medium Temperature Shift (MTS)
DOI:
https://doi.org/10.31004/jutin.v8i3.48117Keywords:
water gas shift, katalis Cu, medium temperature shift (MTS)Abstract
The water-gas shift (WGS) reaction is a crucial process for increasing hydrogen (H₂) production by minimizing carbon monoxide (CO) content. It is widely applied in the petrochemical industry to reduce CO levels in syngas produced from hydrocarbon reforming. Conventionally, this reaction is conducted in two stages: high-temperature shift (HTS) and low-temperature shift (LTS). However, this approach presents both technical and economic limitations. To address these issues, catalysts capable of operating optimally at intermediate temperatures—referred to as medium-temperature shift (MTS)—have been developed. The scope of discussion in this article consists of catalyst development challenges such as sintering, deactivation, and side reactions. This review is intended to serve as a reference for the development of efficient WGS catalysts under MTS conditions, along with modification strategies aimed at enhancing their performance based on current research findings.References
Abdulrasheed, A., Jalil, A. A., Gambo, Y., Ibrahim, M., Hambali, H. U., & Shahul Hamid, M. Y. (2019). A review on catalyst development for dry reforming of methane to syngas: Recent advances. Renewable and Sustainable Energy Reviews, 108(11), 175–193. https://doi.org/10.1016/j.rser.2019.03.054
Baraj, E., Ciahotný, K., & Hlinčík, T. (2021). The water gas shift reaction: Catalysts and reaction mechanism. Fuel, 288(June 2020). https://doi.org/10.1016/j.fuel.2020.119817
Demirel, E., & Ayas, N. (2017). Thermodynamic Modeling of the Water-Gas Shift Reaction in Supercritical Water for Hydrogen Production 1. Theoretical Foundations of Chemical Engineering, 51(1), 76–87. https://doi.org/10.1134/S0040579517010067
Ebrahimi, P., Kumar, A., & Khraisheh, M. (2020). A review of recent advances in water-gas shift catalysis for hydrogen production. Emergent Materials, 3(6), 881–917. https://doi.org/10.1007/s42247-020-00116-y
Fuentes, E. M., Cadete Santos Aires, F. J., Prakash, S., Da Costa Faro, A., De Freitas Silva, T., Assaf, J. M., & Rangel, M. D. C. (2014). The effect of metal content on nickel-based catalysts obtained from hydrotalcites for WGSR in one step. International Journal of Hydrogen Energy, 39(2), 815–828. https://doi.org/10.1016/j.ijhydene.2013.10.114
Jensen, C., & Duyar, M. S. (2021). Thermodynamic Analysis of Dry Reforming of Methane for Valorization of Landfill Gas and Natural Gas. Energy Technology, 9(7), 1–12. https://doi.org/10.1002/ente.202100106
Lee, D. W., Lee, M. S., Lee, J. Y., Kim, S., Eom, H. J., Moon, D. J., & Lee, K. Y. (2013). The review of Cr-free Fe-based catalysts for high-temperature water-gas shift reactions. Catalysis Today, 210, 2–9. https://doi.org/10.1016/j.cattod.2012.12.012
Liska, S., Devianto, H., Sajida, G. N., Restiawaty, E., Miyamoto, M., Uemiya, S., Nishiyama, N., & Budhi, Y. W. (2024). Strategy to Prevent Reverse Reactions in Water Gas Shift (WGS) Through Cu/ZnO Catalyst with MFI Type of Zeolite Support. Evergreen, 11(4), 3299–3306.
Liska, S., Shalihah, R. K., Restiawaty, E., Devianto, H., Miyamoto, M., Uemiya, S., Nishiyama, N., Budhi, Y. W., & Chan, S. H. (2024). Catalytic enhancement of water gas shift reaction with Cu/ZnO/ZSM-5: Overcoming challenges of CO2 and H2 rich feeds. International Journal of Hydrogen Energy, 92(August), 401–408. https://doi.org/10.1016/j.ijhydene.2024.10.093
Lucarelli, C., Molinari, C., Faure, R., Fornasari, G., Gary, D., Schiaroli, N., & Vaccari, A. (2018). Novel Cu-Zn-Al catalysts obtained from hydrotalcite-type precursors for middle-temperature water-gas shift applications. Applied Clay Science, 155(12), 103–110. https://doi.org/10.1016/j.clay.2017.12.022
Mokhatab, S., & Poe, W. (2012). Handbook of Natural Gas Transmission and Processing. Handbook of Natural Gas Transmission and Processing. https://doi.org/10.1016/C2010-0-66115-3
Pal, D. B., Chand, R., Upadhyay, S. N., & Mishra, P. K. (2018). Performance of water gas shift reaction catalysts: A review. Renewable and Sustainable Energy Reviews, 93(February 2017), 549–565. https://doi.org/10.1016/j.rser.2018.05.003
Saeidi, S., Fazlollahi, F., Najari, S., Iranshahi, D., Klemeš, J. J., & Baxter, L. L. (2017). Hydrogen production: Perspectives, separation with special emphasis on kinetics of WGS reaction: A state-of-the-art review. Journal of Industrial and Engineering Chemistry, 49, 1–25. https://doi.org/10.1016/J.JIEC.2016.12.003
Sajida, G. N., Liska, S., Saputera, W. H., Winoto, H. P., & Budhi, Y. W. (2024). Study of the water gas shift reaction thermodynamic, kinetic, and reactor modelling. AIP Conference Proceedings, 3215(1). https://doi.org/10.1063/5.0236602
Smith R J, B., Loganathan, M., & Shantha, M. S. (2010). A review of the water gas shift reaction kinetics. International Journal of Chemical Reactor Engineering, 8. https://doi.org/10.2202/1542-6580.2238
Suhartanto, T., York, A. P. E., Hanif, A., Al-Megren, H., & Green, M. L. H. (2001). Potential utilisation of Indonesia’s natuna natural gas field via methane dry reforming to synthesis gas. Catalysis Letters, 71(1–2), 49–54. https://doi.org/10.1023/A:1016600223749
Wang, C., Liu, C., Fu, W., Bao, Z., Zhang, J., Ding, W., Chou, K., & Li, Q. (2016). The water-gas shift reaction for hydrogen production from coke oven gas over Cu/ZnO/Al2O3 catalyst. Catalysis Today, 263, 46–51. https://doi.org/10.1016/j.cattod.2015.09.044
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Salma Liska, Gita Nur Sajida, Lisa Legawati, Suhendri Suhendri, Zuqni Meldha, Yogi Yolanda, Yola Bertilsya Hendri, Marcela Anandita Rusmana

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

