Prediksi Optimasi Produksi Galon di PDAM AMDK Tirta Moedal Kota Semarang Menggunakan Metode Monte Carlo
DOI:
https://doi.org/10.31004/jutin.v8i2.44648Keywords:
PDAM Tirta Moedal, Packaged Drinking Water, Monte Carlo Method, Production Optimization, Capacity ManagementAbstract
The Regional Drinking Water Company (PDAM) Tirta Moedal of Semarang City faces challenges in optimizing the production of gallon-sized Packaged Drinking Water (AMDK) due to an imbalance between demand and production. This imbalance often results in insufficient production compared to demand, causing a buildup of fleet vehicles and delays in product delivery. This study aims to address this problem by using the Monte Carlo method, a simulation technique that utilizes random numbers and statistics to predict outcomes and solve complex problems. In this study, historical data on demand and production of gallon water were collected and analyzed to build a probability distribution model. Monte Carlo simulation was then applied to simulate various demand and production scenarios. The simulation results were used to identify the most likely scenarios and develop a production optimization plan. The results of the study show that by implementing the Monte Carlo method, PDAM Tirta Moedal can improve the efficiency of production planning and capacity management, so that it is able to meet market demand more efficiently and on time. The implementation of this method can also help reduce delays in product delivery, increase customer satisfaction, and improve overall business performance.References
Carlo, M., Carlo, M., Carlo, M., Carlo, M., Carlo, I. M., Carlo, M., Carlo, M. M., Carlo, P. M., Carlo, M. M., Generator, L. C., Random, M., Generator, N., Congruential, M., Number, R., & Carlo, M. (n.d.). Metode simulasi montecarlo.
Caron, J., & Markusen, J. R. (2016). Gambaran Umum Perusahaan Daerah Air Minum Tirta Moedal Kota Semarang. 1–23.
Comission, E. (2016). 済無No Title No Title No Title. 4(1), 1–23.
Krisnawati, D. (2016). Pengaruh Brand Awareness Terhadap Keputusan Pembelian Amdk Merek Aqua (Studi Pada Masyarakat Di Kota Bandung). Jurnal Manajemen Bisnis Krisnadwipayana, 4(1). https://doi.org/10.35137/jmbk.v4i1.30
Li, M., Yang, F., Uzsoy, R., & Xu, J. (2016). A metamodel-based Monte Carlo simulation approach for responsive production planning of manufacturing systems. In Journal of Manufacturing Systems (Vol. 38). https://doi.org/10.1016/j.jmsy.2015.11.004
Mahessya, R. A. dkk. (2017). •t˜^ E ƒ{•[ƒX‹Ã•k‘Ì‚ ”g“®ŠÖ. Computer Science Journal, 7, 107–118.
Munawaroh, S. (2020). Analisis Struktur, Perilaku dan Kinerja Industri Kreatif di Indonesia. Indonesian Journal of Social and Political and Political Sciences, 1(2), 1–17. https://journal.epistemikpress.id/index.php/Epistemik/article/view/39
Prastyo, W. (2023). Analisis Time Series Forecasting Dalam Memprediksi Produksi Tanaman Pangan Padi Di Indonesia Menggunakan Algoritma Regresi Linear.
Ronika, Z. C., Manulang, A. D. X., & Tarina, D. D. Y. (2022). Penyediaan Air Bersih Dan Sanitasi Dalam Pembangunan Berkelanjutan. Jurnal SDGs, 1(1), 1–6.
Santoso, T., & Basuki, A. (2019). Metode Simulasi Monte Carlo. 7(x), 1–16. https://pdfcoffee.com/qdownload/makalah-simulasi-monte-carlo-pdf-free.html
Syafitri, I., & Dwi Arfika, D. (2024). Penerapan Metode Monte Carlo Pada Simulasi Prediksi Permintaan Mobil. JATI (Jurnal Mahasiswa Teknik Informatika), 8(4), 5820–5826. https://doi.org/10.36040/jati.v8i4.10050
Widyastuti, N., & Rahardja, E. (2018). Analisis pengaruh stres kerja, kompensasi, dan employee engagement terhadap kinerja pegawai (studi pada pegawai PDAM Tirta Moedal Kota Semarang). Diponegoro Journal of Management, 7(1), 1–11. http://ejournal-s1.undip.ac.id/index.php/dbr
Zalmadani, H., Santony, J., & Yunus, Y. (2020). Prediksi Optimal dalam Produksi Bata Merah Menggunakan Metode Monte Carlo. Jurnal Informatika Ekonomi Bisnis, 2(1), 13–20. https://doi.org/10.37034/infeb.v2i1.11
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Vincensius Pandu Galih Raka Siwi, Tita Talitha

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.