Model hujan-limpasan (rainfall-runoff model) untuk prediksi inflow pada Bendungan Bili-Bili

Authors

  • Ika Fatmawati Jamal Universitas Muslim Indonesia, Makassar
  • Ratna Musa Universitas Muslim Indonesia
  • Ali Malombasi Universitas Muslim Indonesia

DOI:

https://doi.org/10.31004/jutin.v8i1.41503

Keywords:

Rainfall-Runoff Modeling, Inflow Prediction, Bili-Bili Dam, Model Accuracy, HEC-HMS

Abstract

This research developed a rainfall-runoff model to predict inflow at the Bili-Bili Dam and to evaluate the model's accuracy. The Soil Conservation Service Curve Number (SCS-CN) method, implemented using HEC-HMS software, was employed to construct the rainfall-runoff model. Model accuracy was assessed using three statistical indices: Nash-Sutcliffe Efficiency (NSE), Percent Bias (PBIAS), and Coefficient of Determination (R²), by comparing the predicted inflow with measured inflow data.  Climatological data (rainfall) and topographic data served as model inputs, while measured inflow data provided the benchmark for validation. Model simulations for the January 14-17, 2024, flood period yielded a peak inflow of 673.6 m³/s at the Bili-Bili Dam on January 15, 2024.  The model's temporal prediction aligned with the measured data, although the predicted inflow was slightly lower than the observed values. Statistical evaluation revealed good model performance, indicated by an NSE of 0.793, a PBIAS of -1.86%, and an R² of 0.81. The high NSE value signifies good agreement between predicted and measured data, while the small negative PBIAS suggests a tendency for the model to slightly underestimate inflow.  The high R² value (0.81) indicates that 81% of the inflow variability is explained by the model. Despite the model's satisfactory performance, further calibration and refinement are recommended to enhance predictive accuracy, particularly in complex hydrological conditions. This research contributes to improved inflow prediction capabilities at the Bili-Bili Dam, crucial for effective water resource planning and management in the region. The findings support more informed decision-making in flood management and mitigation within the Bili-Bili watershed.. 

References

Aerts, J. C. J. H., & Botzen, W. J. W. (2011). Climate change impacts on pricing long-term flood insurance: A comprehensive study for the Netherlands. Global Environmental Change, 21(3), 1045–1060.

Belladona, M., Ningrum, W., Wisnuwardhani, F., & Surapati, A. (2023, October). Pemodelan Sistem Drainase Menggunakan EPA SWMM 5.1 Untuk Mengatasi Genangan di Kelurahan Kebun Tebeng Bengkulu. In Prosiding Seminar Nasional Penelitian LPPM UMJ (Vol. 1, No. 1).

Enung, E., Kasyanto, H., & Sari, R. R. (2023). Penerapan Algoritma Multilayer Perceptron (MLP) untuk Memprediksi Debit di Sungai Citarum Bagian Hulu (Pos Pengukuran Majalaya), Kab. Bandung, Jawa Barat. Potensi: Jurnal Sipil Politeknik, 25(1), 1-8.

Fiati, R., & Latubessy, A. (2015). Identifikasi Daerah Potensi Banjir Berbasis Expert System. Prosiding SNATIF, 181-190.

Gessang, O. M. (2020). Model Optimalisasi Pengelolaan Banjir Pada Bendungan Bili-Bili Menggunakan Artificial Neural Networks (ANN) (Doctoral dissertation, Institut Teknologi Sepuluh Nopember).Ghimire, R., Ferreira, S., & Dorfman, J. H. (2015). Flood-induced displacement and civil conflict. World Development, 66, 614–628.

Gumindoga, W., Rwasoka, D. T., Nhapi, I., & Dube, T. (2017). Ungauged runoff simulation in Upper Manyame Catchment, Zimbabwe: Application of the HEC-HMS model. Physics and Chemistry of the Earth, 100, 371–382.

Hadihardaja, I. K., & Sutikno, S. (2005). Pemodelan Curah Hujan-Limpasan Menggunakan Artificial Neural Network (ANN) dengan Metode Backpropagation. Jurnal Teknik Sipil ITB, 12(4), 250-258.

Halwatura, D., & Najim, M. M. M. (2013). Application of the HEC-HMS model for runoff simulation in a tropical catchment. Environmental Modelling and Software, 46, 155–162.

Li, J., & Shi, W. (2015). Effects of alpine swamp wetland change on rainfall season runoff and flood characteristics in the headwater area of the Yangtze River. Catena, 127, 116–123.

Nharo, T., Makurira, H., & Gumindoga, W. (2019). Mapping floods in the middle Zambezi Basin using earth observation and hydrological modeling techniques. Physics and Chemistry of the Earth, 114(June), 1–9.

Quiroga, V. M., Kure, S., Udo, K., & Mano, A. (2016). Application of 2D numerical simulation for the analysis of the February 2014 Bolivian Amazonia flood: Application of the new HEC-RAS version 5. RIBAGUA - Revista Iberoamericana Del Agu, February 2014, 1–9.

Sandi, C., Adityawan, M. B., Harlan, D., Farid, M., & Nadeak, N. (2022). Artificial Neural Network dan Pemodelan Numerik untuk Prediksi Parameter Aliran akibat Dam Break. Jurnal Teknik Sumber Daya Air, 129-140.

USACE. (2022). HEC-HMS Tutorials and Guides. US Army Corps of Engineers, 1–1054.

Suharsono, T. N. (2025). Prediksi Banjir Di Kabupaten Karawang Berdasarkan Curah Hujan Dengan Metode Artifical Neural Network. Journal of Data Analytics, Information, and Computer Science, 2(1), 10-19.

Younis, S. M. Z., & Ammar, A. (2018). Quantification of impact of changes in land use-land cover on hydrology in the upper Indus Basin, Pakistan. Egyptian Journal of Remote Sensing and Space Science, 21(3), 255–263.

Widyastuti, S., Suhartanto, E., & Dermawan, V. (2016). Analisa Hujan Limpasan Menggunakan Model Artifical Neural Network (ANN) di Sub DAS Lesti. Jurnal Teknik Pengairan Universitas Brawijaya.

Downloads

Published

2025-01-17

How to Cite

Jamal, I. F., Musa, R., & Malombasi, A. (2025). Model hujan-limpasan (rainfall-runoff model) untuk prediksi inflow pada Bendungan Bili-Bili. Jurnal Teknik Industri Terintegrasi (JUTIN), 8(1), 1000–1013. https://doi.org/10.31004/jutin.v8i1.41503

Issue

Section

Articles of Research

Similar Articles

1 2 3 > >> 

You may also start an advanced similarity search for this article.

Most read articles by the same author(s)