Analisis tekno ekonomi sistem hidrogen hijau dengan model matlab simulink di Lombok Indonesia
DOI:
https://doi.org/10.31004/jutin.v7i4.33553Keywords:
Techno-economics, Green Hydrogen, Matlab Simulink, Renewable EnergyAbstract
This research conducts a techno-economic analysis of a green hydrogen system in Lombok, Indonesia, using a MATLAB Simulink-based simulation model. The primary objective of this study is to evaluate the long-term economic feasibility of a green hydrogen project through the analysis of key financial parameters such as Net Present Value (NPV), Internal Rate of Return (IRR), and the break-even point. The model simulation results show that the production output of green hydrogen is 121,391 kg, and the project generates a Net Present Value (NPV) of $1,205,031.1 over a 25-year operational period. The Internal Rate of Return (IRR) of the project reaches 11.9%, indicating that the project has a promising profit potential. Additionally, the break-even point is achieved in the 8th year, meaning that the initial investment can be recouped by that time. These findings provide an initial overview of the economic prospects of green hydrogen development in Lombok and demonstrate the potential of green energy in supporting the energy transition in Indonesia. This study also offers guidance for policymakers and investors in making strategic decisions related to investments in renewable energy technology.References
Idris, R., & Lestari, E. (2017). Pengaruh Pengorganisasian Terhadap Peningkatan Mutu Pendidikan Di Sd Inpres
Baral, S., & Šebo, J. (2024). Techno-economic assessment of green hydrogen production integrated with hybrid and organic Rankine cycle (ORC) systems. Heliyon, 10(4), e25742. doi: 10.1016/j.heliyon.2024.e25742
Bekebrok, H., Langnickel, H., Pluta, A., Zobel, M., & Dyck, A. (2022). Underground Storage of Green Hydrogen—Boundary Conditions for Compressor Systems. Energies, 15(16), 5972. doi: 10.3390/en15165972
BMKG. (2024). Prakiraan Cuaca. BMKG NTB. Retrieved from https://www.bmkg.go.id/cuaca/prakiraan-cuaca.bmkg?Kota=Praya&AreaID=501422&Prov=22
Bourne, S. (2012). The future of fuel: The future of hydrogen. Fuel Cells Bulletin, 2012(1), 12–15. doi: 10.1016/S1464-2859(12)70027-5
Butson, J. D., Sharma, A., Tournet, J., Wang, Y., Tatavarti, R., Zhao, C., Jagadish, C., Tan, H. H., & Karuturi, S. (2023). Unlocking Ultra?High Performance in Immersed Solar Water Splitting with Optimised Energetics. Advanced Energy Materials, 13(40). doi: 10.1002/aenm.202301793
Clean Hydrogen Partnership. (2022). Clean Hydrogen JU - SRIA Key Performance Indicators (KPIs). Https://Www.Clean-Hydrogen.Europa.Eu/.
Dutta, S. (2014). A review on production, storage of hydrogen and its utilization as an energy resource. Journal of Industrial and Engineering Chemistry, 20(4), 1148–1156. doi: 10.1016/j.jiec.2013.07.037
Emanuele Taibi, Herib Blanco, Raul Miranda, & Marcelo Carmo. (2020). Green Hydrogen Cost Reduction . Retrieved from https://www.irena.org/-/media/Files/IRENA/Agency/Publication/2020/Dec/IRENA_Green_hydrogen_cost_2020.pdf?rev=4ce868aa69b54674a789f990e85a3f00
Franzén, K. (2023). Evaluating electrolyser setups for hydrogen production from offshore wind power: A case study in the Baltic Sea. Retrieved from https://riunet.upv.es/handle/10251/196190
GRAHAM, J. R. (2022). Presidential Address: Corporate Finance and Reality. The Journal of Finance, 77(4), 1975–2049. doi: 10.1111/jofi.13161
Gusti Fauzi Maulana Gafli, & W. M. Daryanto. (2019). Decision Making on Project Feasibility using Capital Budgeting Model and Sensitivity Analysis. Case Study: Development Solar PV Power Plant Project. Engineering, Environmental Science, Business. Retrieved from https://www.semanticscholar.org/paper/DECISION-MAKING-ON-PROJECT-FEASIBILITY-USING-MODEL-Gafli-Daryanto/5d7200a5359c588be2a851b22b39fb6f0994c050?utm_source=direct_link
Hanley, E. S., Deane, J., & Gallachóir, B. Ó. (2018). The role of hydrogen in low carbon energy futures–A review of existing perspectives. Renewable and Sustainable Energy Reviews, 82, 3027–3045. doi: 10.1016/j.rser.2017.10.034
Hosseini, S. E., & Wahid, M. A. (2016). Hydrogen production from renewable and sustainable energy resources: Promising green energy carrier for clean development. Renewable and Sustainable Energy Reviews, 57, 850–866. doi: 10.1016/j.rser.2015.12.112
IEA. (2021, December 17). The Cost of Capital in Clean Energy Transitions. International Energy Agency . Retrieved from https://www.iea.org/articles/the-cost-of-capital-in-clean-energy-transitions
International Energy Agency. (2015). Energy Technology Perspectives 2015-Mobilising Innovation to Accelerate Climate Action. International Energy Agency (IEA).
IRENA. (2019). Hydrogen: A renewable energy perspective. Abu Dhabi. Retrieved from https://www.irena.org/-/media/Files/IRENA/Agency/Publication/2019/Sep/IRENA_Hydrogen_2019.pdf
Kemendagri. (2023). Visualisasi Data Kependudukan. Dukcapil. Retrieved from https://gis.dukcapil.kemendagri.go.id/peta/
Lai, C. S., & McCulloch, M. D. (2017). Levelized cost of electricity for solar photovoltaic and electrical energy storage. Applied Energy, 190, 191–203. doi: 10.1016/j.apenergy.2016.12.153
Mehta, M., Zaaijer, M., & Terzi, D. von. (2022). Optimum Turbine Design for Hydrogen Production from Offshore Wind. Journal of Physics: Conference Series, 2265(4), 042061. doi: 10.1088/1742-6596/2265/4/042061
Mohamed Khaled Khalaf, Karim Mohamed Mohamed, Aya Hesham Mostafa, Salma Abdelbaset Ali, Mayar Sayed Mohamed, Nourhan Nasser Ahmed, & Hazzem Hossam Ibrahem. (2019). Sustainability and Renewable Energy Challenge Techno-Economic Assessment of Green Hydrogen Production Project Number (236). Cairo. Retrieved from https://github.com/Ainshamsuniverity/Techno-Economic-Assessment-of-Green-Hydrogen-Production-Project-Soluation
Nuno Fernandes. (2014). Finance for Executives: A practical guide for managers. NPVPublishing. Retrieved from https://books.google.co.id/books?id=4ryFAwAAQBAJ&printsec=frontcover&source=gbs_ge_summary_r&cad=0#v=onepage&q&f=false
Nurizat Rahman, M., & Abdul Wahid, M. (2024). Green hydrogen prospects in Peninsular Malaysia: a techno-economic analysis via Monte Carlo simulations. Future Sustainability, 2(2), 27–45. doi: 10.55670/fpll.fusus.2.2.4
Parra, D., Valverde, L., Pino, F. J., & Patel, M. K. (2019). A review on the role, cost and value of hydrogen energy systems for deep decarbonisation. Renewable and Sustainable Energy Reviews, 101, 279–294. doi: 10.1016/j.rser.2018.11.010
Perna, A., Minutillo, M., Di Micco, S., & Jannelli, E. (2022). Design and Costs Analysis of Hydrogen Refuelling Stations Based on Different Hydrogen Sources and Plant Configurations. Energies, 15(2), 541. doi: 10.3390/en15020541
Rodriguez, M., Arcos–Aviles, D., & Martinez, W. (2023). Fuzzy logic-based energy management for isolated microgrid using meta-heuristic optimization algorithms. Applied Energy, 335, 120771. doi: 10.1016/J.APENERGY.2023.120771
Santana, J. C. C., Machado, P. G., Nascimento, C. A. O. do, & Ribeiro, C. de O. (2023). Economic and Environmental Assessment of Hydrogen Production from Brazilian Energy Grid. Energies, 16(9), 3769. doi: 10.3390/en16093769
Sinaga, R., Tuati, N. F., Beily, M. D. E., & Sampeallo, A. S. (2019). Modeling and analysis of the solar photovoltaic levelized cost of electricity (LCoE) - case study in Kupang. Journal of Physics: Conference Series, 1364(1), 012066. doi: 10.1088/1742-6596/1364/1/012066
Staffell, I., Scamman, D., Velazquez Abad, A., Balcombe, P., Dodds, P. E., Ekins, P., Shah, N., & Ward, K. R. (2019). The role of hydrogen and fuel cells in the global energy system. Energy & Environmental Science, 12(2), 463–491. doi: 10.1039/C8EE01157E
Tejero-Gómez, J. A., & Bayod-Rújula, Á. A. (2023). Analysis of Photovoltaic Plants with Battery Energy Storage Systems (PV-BESS) for Monthly Constant Power Operation. Energies, 16(13), 4909. doi: 10.3390/en16134909
the Hydrogen Council. (2021). Hydrogen Insights A perspective on hydrogen investment, market development a. Retrieved from https://hydrogencouncil.com/wp-content/uploads/2021/02/Hydrogen-Insights-2021.pdf
The MathWorks Inc. (2023). Green Hydrogen Microgrid. Retrieved from https://www.mathworks.com/help/sps/ug/green-hydrogen-microgrid.html
Vartiainen, E., Breyer, C., Moser, D., Román Medina, E., Busto, C., Masson, G., Bosch, E., & Jäger-Waldau, A. (2022). True Cost of Solar Hydrogen. Solar RRL, 6(5). doi: 10.1002/solr.202100487
Villalba-Herreros, A., d’Amore-Domenech, R., Crucelaegui, A., & Leo, T. J. (2023). Techno-Economic Assessment of Large-Scale Green Hydrogen Logistics Using Ammonia As Hydrogen Carrier: Comparison to Liquified Hydrogen Distribution and In Situ Production. ACS Sustainable Chemistry & Engineering, 11(12), 4716–4726. doi: 10.1021/acssuschemeng.2c07136
Wesley Cole, & Akash Karmakar. (2023). Cost Projections for Utility-Scale Battery. 15013 Denver West Parkway. Retrieved from https://www.nrel.gov/docs/fy23osti/85332.pdf
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Parman Parman, Jooned Hendrasakti, Firman Bagja Juangsa
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.