Penyelesaian Split Delivery VRP dengan Ant Colony Optimization (Studi Kasus: Pengiriman Produk di PT Sinarmas Distribusi Nusantara)

Authors

  • Anita Br Ginting Program Studi D4 Logistik Bisnis, Sekolah Vokasi, Universitas Logistik dan Bisnis Internasional, Bandung
  • Reza Fayaqun Program Studi D4 Logistik Bisnis, Sekolah Vokasi, Universitas Logistik dan Bisnis Internasional, Bandung
  • Muhammad Ardhya Bisma Program Studi D4 Logistik Bisnis, Sekolah Vokasi, Universitas Logistik dan Bisnis Internasional, Bandung

DOI:

https://doi.org/10.31004/jutin.v7i1.24844

Keywords:

SDVRP, Ant Colony Optimization, Metaheuristic, Optimization, NP-Hard Problem

Abstract

PT Sinarmar Distribusi distributes its products to all Distribution Center (DC) every day. Currently PT Sinarmas Distribution Nusantara uses a predetermined route every day using Colt Diesel Double vehicles with maximum transport capacity of 500 cartons.   Currently the number of products carried by each vehicle never reaches its maximum carrying capacity. PT Sinarmas Distribusi Nusantara wants vehicle transport capacity to be used optimally. This route problem at PT Sinarmas Distribusi Nusantara can be defined as Split Delivery Vehicle Routing Problem (SDVRP). Ant Colony Optimization (ACO) is a metaheuristic that can be used to solve SDVRP. By using ACO the resulting route is always shorter than the current route and the number of vehicles used is smaller.

References

Cook, W. J., Applegate, D. L., Bixby, R. E., & Chvatal, V. (2011). The traveling salesman problem: a computational study. Princeton university press.

Dorigo, M., Birattari, M., & Stutzle, T. (2006). Ant colony optimization. IEEE Computational Intelligence Magazine, 1(4), 28–39.

Gao, W. (2020). New ant colony optimization algorithm for the traveling salesman problem. International Journal of Computational Intelligence Systems, 13(1), 44–55.

Labadie, N., Prins, C., & Prodhon, C. (2016). Metaheuristics for vehicle routing problems. John Wiley & Sons.

Min, J., Jin, C., & Lu, L. (2020). Improved Sweep Algorithm-Based Approach for Vehicle Routing Problems with Split Delivery. LISS2019: Proceedings of the 9th International Conference on Logistics, Informatics and Service Sciences, 109–121.

Nagar, S., & Nagar, S. (2018). Introduction to Octave. Springer.

Ozbaygin, G., Karasan, O., & Yaman, H. (2018). New exact solution approaches for the split delivery vehicle routing problem. EURO Journal on Computational Optimization, 6(1), 85–115.

PT Sinarmas Distribusi Nusantara. (n.d.). Retrieved January 18, 2024, from https://sdn.id/

Ramos, V. S. (2020). SIHR: a MATLAB/GNU Octave toolbox for single image highlight removal. Journal of Open Source Software, 5(45), 1822.

Sanggala, E., & Bisma, M. A. (2023). Analysis of The Ant Number Effects on Ant Colony Optimization for Solving Russia-20-Nodes-SDVRP Instance. Sainteks: Jurnal Sain Dan Teknik, 5(2), 163–174.

Santosa, B. (2017). Pengantar Metaheuristik: Implementasi dengan Matlab (Vol. 1). ITS Tekno Sains.

Shi, J., Zhang, J., Wang, K., & Fang, X. (2018). Particle swarm optimization for split delivery vehicle routing problem. Asia-Pacific Journal of Operational Research, 35(02), 1840006.

Downloads

Published

2024-01-27

How to Cite

Ginting, A. B., Fayaqun, R., & Bisma, M. A. . (2024). Penyelesaian Split Delivery VRP dengan Ant Colony Optimization (Studi Kasus: Pengiriman Produk di PT Sinarmas Distribusi Nusantara). Jurnal Teknik Industri Terintegrasi (JUTIN), 7(1), 369–378. https://doi.org/10.31004/jutin.v7i1.24844

Issue

Section

Articles of Research