Analisis Profitabilitas dan Risiko Operasional Restoran Ayam Bakar Menggunakan Simulasi Monte Carlo

Authors

  • Muhammad Ashbar As Silmy Universitas Al-Azhar Medan, Sumatera Utara
  • Muhammad Rizky Akbar Nasution Universitas Al – Azhar, Medan, Sumatera Utara
  • Ryan Adriansyah Universitas Al – Azhar, Medan, Sumatera Utara
  • Radith Atilasyah Universitas Al – Azhar, Medan, Sumatera Utara
  • Ryu Arfan Setiawan Universitas Al – Azhar, Medan, Sumatera Utara

DOI:

https://doi.org/10.31004/jutin.v9i1.55898

Keywords:

Monte Carlo Simulation, Profitability, Risk Analysis, Probability Distribution, Operational Management

Abstract

This study aims to analyze the profitability and operational risk of a grilled chicken restaurant using a Monte Carlo simulation approach based on historical data from 2022–2026. The analyzed variables include number of customers, selling price, raw material cost, and fixed operational cost. A mathematical profit model was simulated through 10,000 iterations to obtain the probability distribution of daily profit. The results indicate an expected daily profit of approximately IDR 1.57 million with a very high probability of positive returns and minimal risk of loss. Correlation analysis reveals that price has a positive relationship with profit; however, the number of customers is identified as the most dominant factor influencing profitability. The stable convergence of the simulation confirms the reliability and validity of the model. These findings demonstrate that Monte Carlo simulation is an effective decision-support tool for financial feasibility evaluation and risk management in the culinary business sector.

References

Abuhishmeh, K., Hojat Jalali, H., & Bani Hani, S. M. (2025). Comparison of Risk Assessment Approaches Using Quantitative Bayesian Regression for Direct and Stochastic Indirect Consequences of Sewer Pipe Failure. Journal of Pipeline Systems Engineering and Practice, 16(4). https://doi.org/10.1061/JPSEA2.PSENG-1858

Al-Hammadi, M., & Gungormusler, M. (2024). New insights into Chlorella vulgaris applications. Biotechnology and Bioengineering, 121(5), 1486–1502. https://doi.org/10.1002/bit.28666

Aly, A. E., El-Adll, M. E., Barakat, H. M., & Aldallal, R. A. (2023). A new least squares method for estimation and prediction based on the cumulative Hazard function. AIMS Mathematics, 8(9), 21968–21992. https://doi.org/10.3934/math.20231120

Brilon, W., Wu, N., & Koenig, R. (2023). Delays and Queue Lengths at Traffic Signals With Two Greens in One Cycle. Transportation Research Record, 2677(2), 828–838. https://doi.org/10.1177/03611981221108981

Castro, G., Cobo, M., & Rodríguez, I. (2024). Identification of hazardous organic compounds in e-waste plastic using non-target and suspect screening approaches. Chemosphere, 356. https://doi.org/10.1016/j.chemosphere.2024.141946

Gouse, S. M., & Bidalannagari, O. (2025). The effect of ZnO-Al2O3 Hybrid Nano-Lubricant in R600a Vapor Compression Refrigeration System: An Experimental Investigation. In M. K. R. Vennapusa & A. Shaik (Eds.), AIP Conference Proceedings (Vol. 3237, Issue 1). American Institute of Physics. https://doi.org/10.1063/5.0247657

Iqbal, S., Habib, S., Ali, M., Shafiq, A., Ur Rehman, A., Ahmed, E. M., Khurshaid, T., & Kamel, S. (2022). The Impact of V2G Charging/Discharging Strategy on the Microgrid Environment Considering Stochastic Methods. Sustainability (Switzerland), 14(20). https://doi.org/10.3390/su142013211

Mostafaei, K., Maleki, S., Zamani Ahmad Mahmoudi, M., & Knez, D. (2022). Risk management prediction of mining and industrial projects by support vector machine. Resources Policy, 78. https://doi.org/10.1016/j.resourpol.2022.102819

Nguyen, T.-H., Nguyen, T.-T., Hoang, D.-M., Dang, V.-H., & Pham, X.-D. (2025). Efficient reliability analysis method for non-linear truss structures using machine learning-based uncertainty quantification. Computers and Mathematics with Applications, 182, 66–83. https://doi.org/10.1016/j.camwa.2025.01.014

Pitts, A. J., Yomogida, M., Aidala, A., Gelman, A., & Chen, Q. (2025). Multilevel Regression and Poststratification Using Margins of Poststratifiers: Improving Inference for HIV Health Outcomes During the COVID-19 Pandemic. Statistics in Medicine, 44(18–19). https://doi.org/10.1002/sim.70223

Pourkheirollah, H., Keskinen, J., Mäntysalo, M., & Lupo, D. (2023). Statistical analysis and Monte-Carlo simulation of printed supercapacitors for energy storage systems. Journal of Power Sources, 585. https://doi.org/10.1016/j.jpowsour.2023.233626

Soldouz, S. A., & Hellinga, B. (2025). Improving the Accuracy of the Spatial Transferability of Direct-demand Models for Bicycle Volume Estimation at Intersections. Transportation Research Record. https://doi.org/10.1177/03611981251401589

Wannenburg, J. W., Ngcobo, G. N., & Heyns, P. S. (2026). Development of a predictive, risk-based model to assess the effects of maintenance decisions on vertical mine shaft structures. Tunnelling and Underground Space Technology, 171. https://doi.org/10.1016/j.tust.2026.107481

Wu, Q., & Long, L. (2022). Numerical study on grain evolution of gradient-structured aluminum matrix composites induced by graphene nanoplatelets. Applied Physics A: Materials Science and Processing, 128(12). https://doi.org/10.1007/s00339-022-06274-6

Zhang, Z., Ding, R., Zhang, W., Wu, L., & Liu, M. (2026). Dynamic Risk Assessment of the Coal Slurry Preparation System Based on LSTM-RNN Model. Sustainability (Switzerland), 18(2). https://doi.org/10.3390/su18020684

Zheng, Z., & Shuang, Q. (2026). Dynamic scenario analysis and prediction of embodied carbon emissions in China’s building sector: A hybrid interpretable machine learning model. Environmental Impact Assessment Review, 116. https://doi.org/10.1016/j.eiar.2025.108119

Zhu, H., & Zou, G. (2024). Stability and L2-penalty in Model Averaging. Journal of Machine Learning Research, 25. https://www.scopus.com/inward/record.uri?eid=2-s2.0-105018669753&partnerID=40&md5=63e99fb32fb3aae5f9f007f807e6ad94

Zou, H., Xiao, L., Zeng, D., & Luo, S. (2025). DYNAMIC PREDICTION WITH MULTIVARIATE LONGITUDINAL OUTCOMES AND LONGITUDINAL MAGNETIC RESONANCE IMAGING DATA. Annals of Applied Statistics, 19(1), 505–528. https://doi.org/10.1214/24-AOAS1970

Downloads

Published

2026-01-20

How to Cite

Silmy, M. A. A., Nasution, M. R. A., Adriansyah, R., Atilasyah, R., & Setiawan, R. A. (2026). Analisis Profitabilitas dan Risiko Operasional Restoran Ayam Bakar Menggunakan Simulasi Monte Carlo. Jurnal Teknik Industri Terintegrasi (JUTIN), 9(1), 1180–1187. https://doi.org/10.31004/jutin.v9i1.55898

Issue

Section

Articles of Research

Similar Articles

<< < 5 6 7 8 9 10 11 12 13 14 > >> 

You may also start an advanced similarity search for this article.