Analisis Stabilisasi Bioetanol Terhadap Korosi Logam Menggunakan Inhibitor Alami Berbasis Minyak Pala

Authors

  • Hernita Zaida Nisrina Universitas Al Azhar Medan
  • Nazwa Alya Universitas Al Azhar Medan
  • Rizky Setiawan Ramadhan Universitas Al Azhar Medan

DOI:

https://doi.org/10.31004/jutin.v9i1.54907

Keywords:

Nutmeg Essential Oil, Green Corrosion Inhibitor, Carbon Steel, Bioethanol, Inhibition Efficiency, Langmuir Adsorption, Electrochemistry

Abstract

This research evaluates the potential of nutmeg essential oil as an environmentally friendly corrosion inhibitor for carbon steel in a bioethanol medium. GC-MS analysis identified 23 compounds, with the major components including sabinene (21.3%), α-pinene (18.7%), β-pinene (12.4%), myristicin (8.9%), and limonene (7.2%). Weight loss testing over 90 days showed the control system had a corrosion rate of 2.847 mm/year, which significantly decreased to 0.412 mm/year with the addition of 750 ppm nutmeg oil, resulting in an optimal inhibition efficiency of 85.5%. Increasing the concentration to 1000 ppm did not provide a significant improvement, indicating adsorption saturation on the metal surface. Electrochemical characterization thru potentiodynamic polarization curves showed a shift in corrosion potential from -0.687 V to -0.523 V and a decrease in corrosion current density from 48.3 μA/cm² to 6.8 μA/cm² at the optimal concentration, confirming nutmeg oil as a mixed-type inhibitor. Electrochemical impedance spectroscopy showed an increase in polarization resistance from 245 Ω·cm² to 1,687 Ω·cm², consistent with the weight loss data.

References

Argyropoulos, V., Boyatzis, S. C., & Giannoulaki, M. (n.d.). Organic Green Corrosion Inhibitors Derived from Natural and / or Biological Sources for Conservation of Metals Cultural Heritage. 341–367.

Chen, M., Meng, X., Yang, J., Leng, L., Zhan, H., & Li, H. (2026). Hydrothermal valorization of alcohol industry residues: Current advances and future directions. Separation and Purification Technology, 380. https://doi.org/10.1016/j.seppur.2025.135340

Hedayati, S., Shahidi, F., Majzoobi, M., Koocheki, A., & Farahnaky, A. (2020). Structural, rheological, pasting and textural properties of granular cold water swelling maize starch: Effect of NaCl and CaCl2. Carbohydrate Polymers, 242. https://doi.org/10.1016/j.carbpol.2020.116406

Ihamdane, R., Tiskar, M., Outemsaa, B., Zelmat, L., Dagdag, O., Berdimurodov, E., Ebenso, E. E., & Chaouch, A. (2023). Essential Oil of Origanum vulgare as a Green Corrosion Inhibitor for Carbon Steel in Acidic Medium. Arabian Journal for Science and Engineering, 48(6), 7685–7701. https://doi.org/10.1007/s13369-023-07693-0

Jafari-Gohargan, M., Mohammadi, M., Mehrabani-Zeinabad, A., & Karimi, K. (2026). Techno-economic analysis of sustainable biofuel production from whole olive waste. Fuel, 407. https://doi.org/10.1016/j.fuel.2025.137530

Jain, S., & Kumar, S. (2026). Valorization of lignin-rich byproduct from commercial bioethanol process: Production of phenolic-rich bio-oil and high-purity silica. Biomass and Bioenergy, 207. https://doi.org/10.1016/j.biombioe.2025.108805

Katuwal, P., Regmi, R., Joshi, S., & Bhattarai, J. (2020). Assessment on the Effective Green—Based Nepal Origin Plants Extract as Corrosion Inhibitor for Mild Steel in Bioethanol and its Blend. 1(5), 1–12.

Km, S., Praveen, B. M., & Devendra, B. K. (2024). A review on corrosion inhibitors: Types, mechanisms, electrochemical analysis, corrosion rate and efficiency of corrosion inhibitors on mild steel in an acidic environment. Results in Surfaces and Interfaces, 16, 100258. https://doi.org/10.1016/j.rsurfi.2024.100258

Kusmayadi, A., Leong, Y. K., Chyuan, H. C., Hidayatullah, I. M., Budiastuti, H., & Ridwan, I. (2026). Advancements in low-carbon biofuel production from agricultural waste valorization. Biomass and Bioenergy, 207. https://doi.org/10.1016/j.biombioe.2025.108726

Loto, R. T., & Ororo, S. K. (2021). Electrochemical studies of the synergistic combination e ect of thymus mastichina and illicium verum essential oil extracts on the corrosion inhibition of low carbon steel in dilute acid solution. 1–13.

Moura, P., Santana, B. De, & Meira, M. (n.d.). Influence of natural additives on corrosion caused by biodiesel in the carbon steel 18.

Nwigwe, U. S., & Nwoye, C. I. (2023). The Efficacy of Plant Inhibitors as Used against Structural Mild Steel Corrosion: A Review. 40, 381–395.

Paredes, G., Gonzales, S., Lazaro, A., & Benegas, R. (2026). Valorization of contaminated Eichhornia crassipes in phytoremediation of tannery waters: Bioethanol production. Waste Management Bulletin, 4(1). https://doi.org/10.1016/j.wmb.2025.100268

Ramesh, M., & Rajeshkumar, L. (2021). Chapter 9 Case-Studies on Green Corrosion Inhibitors. 107, 204–221.

Saeful Amin, Muhammad Ilham Sulaeman, & Meti Megawati. (2025). Literature Review: Potensi Minyak Atsiri Biji Pala (Myristica Fragrans) Untuk Kesehatan. Indonesian Journal of Science, 1(6).

Sanchez, A., Martinez-Victoria, S., Rodriguez, C., & Sacramento Rivero, J. C. (2025). Bioethanol as a profitable transition fuel produced in sustainable sugarcane biorefineries. A case study in Mexico. Sustainable Energy Technologies and Assessments, 84. https://doi.org/10.1016/j.seta.2025.104730

Sharma, A., Salhotra, S., Rathour, R. K., Solanki, P., Putatunda, C., Hans, M., Walia, A., & Bhatia, R. K. (2026). Recent developments in separation and storage of lignocellulosic biomass-derived liquid and gaseous biofuels: A comprehensive review. Biomass and Bioenergy, 204. https://doi.org/10.1016/j.biombioe.2025.108417

Sipil, E. D. A. N. (2023). Desain dan pembuatan alat uji pompa sentrifugal skala laboratorium. 04(01). https://doi.org/10.54123/vorteks.v4i1.267

Thajuddin, F., Rasheed, A. S., Elumalai, A., Palanivel, P., Nooruddin, T., & Dhanasekaran, D. (2026). Harnessing microalgae and cyanobacteria for sustainable bioenergy Production: Integration of molecular engineering and AI-driven approaches. Renewable Energy, 256. https://doi.org/10.1016/j.renene.2025.123961

Ying, W., Du, Y., Wang, S., & Zhang, J. (2026). Autothermal p-TsOH-H2O2 pretreatment drives efficient bamboo delignification and enhanced ethanol production. Biomass and Bioenergy, 207. https://doi.org/10.1016/j.biombioe.2025.108781

Zhang, H., Lin, Q., Zhu, R., Wang, X., Ren, J., Lyu, B., Peng, F., Wu, A., & Li, L. (2026). Unraveling the preferential cleavage of glycosidic bonds in xylan chains during acidic hydrolysis by MD and DFT analysis. International Journal of Biological Macromolecules, 337. https://doi.org/10.1016/j.ijbiomac.2025.149379

Zhang, H., Yu, Y., Wu, Y., Li, Y., Feng, L., Li, Y., Du, Q., Zhao, R., Wang, X., Song, X., & Xu, S. (2026). Characterization of Early Nodulin 93 (ENOD93) on the mucilage secretion of aerial roots in sorghum. Genetic Resources and Crop Evolution, 73(1). https://doi.org/10.1007/s10722-025-02635-1

Zhang, M., Ma, Z., Yuan, L., Li, H., Fan, G., & Li, F. (2026). Defect-mediated MgO-TiOx hybrid composite anchored single-atom Cu catalysts for enhanced bioethanol upgrading. Applied Catalysis B: Environmental, 383. https://doi.org/10.1016/j.apcatb.2025.126134

Znini, M. (2019). Application of Essential Oils as green corrosion inhibitors for metals and alloys in different aggressive mediums—A review-.

Zufri Hasrudy Siregar 1*, Mawardi 2 Riana Puspita 3, Muhammad Fazri 4, Refiza 5, Muhammad Irwansyah 6, S. P. S. 7, & 1. (2023). PEMANFAATAN AIR HUJAN DAN MINYAK JELANTAHH SEBAGAI KEPEDULIAN LINGKUNGAN DI IKATAN KELUARGA BESAR ISTRI (IKBI) PTPN-III DESA SEI MANGKEI. 3(2), 219–225. https://doi.org/10.54123/deputi.v3i2.276

Downloads

Published

2026-01-20

How to Cite

Nisrina, H. Z., Alya, N., & Ramadhan, R. S. (2026). Analisis Stabilisasi Bioetanol Terhadap Korosi Logam Menggunakan Inhibitor Alami Berbasis Minyak Pala. Jurnal Teknik Industri Terintegrasi (JUTIN), 9(1), 998–1006. https://doi.org/10.31004/jutin.v9i1.54907

Issue

Section

Articles of Research

Similar Articles

<< < 11 12 13 14 15 16 17 18 19 > >> 

You may also start an advanced similarity search for this article.