Perawatan Mesin untuk Meningkatkan Performa dan Keandalan Mesin dan Peralatan

Authors

  • Romiyadi Romiyadi Politeknik Kampar

DOI:

https://doi.org/10.31004/jutin.v8i3.47078

Keywords:

Machine Maintenance, Preventive Maintenance, Downtime, Operational Eficiency

Abstract

Machine maintenance is a critical component in the industrial and manufacturing sectors to ensure that equipment operates efficiently and has a prolonged lifespan. This study aims to explore the various types of machine maintenance implemented across different industrial sectors, along with the benefits and challenges associated with their application. Utilizing a literature review approach, the study identifies four main types of maintenance: preventive, corrective, predictive, and redesign. Each maintenance type plays a crucial role in enhancing machine performance, reducing downtime, and extending the service life of industrial equipment. Effective maintenance practices offer several advantages, including improved operational performance, reduced repair costs, and enhanced workplace safety. However, the implementation of maintenance strategies presents several challenges, such as high costs, limited availability of skilled labor, and the time required for maintenance procedures. Despite these obstacles, with the adoption of appropriate strategies, such challenges can be effectively managed, enabling companies to achieve greater operational efficiency and long-term sustainability.

References

Agoro, H. (2025). Reducing Downtime in Production Lines Through Proactive Maintenance Strategies. March.

Ahuja, A., & Gupta, M. (2024). Optimizing Predictive Maintenance with Machine Learning and IOT : A Business Strategy for Reducing Downtime and Operatioanal Costs. October. https://doi.org/10.13140/RG.2.2.15574.46400

Azizi, A. (2015). Evaluation Improvement of Production Productivity Performance using Statistical Process Control, Overall Equipment Efficiency, and Autonomous Maintenance. Procedia Manufacturing, 2(February), 186–190. https://doi.org/10.1016/j.promfg.2015.07.032

Bafandegan Emroozi, V., Kazemi, M., & Doostparast, M. (2025). Enhancing industrial maintenance planning: Optimization of human error reduction and spare parts management. Operations Research Perspectives, 14(March), 100336. https://doi.org/10.1016/j.orp.2025.100336

Benhanifia, A., Cheikh, Z. Ben, Oliveira, P. M., Valente, A., & Lima, J. (2025). Systematic review of predictive maintenance practices in the manufacturing sector. Intelligent Systems with Applications, 26(October 2024), 200501. https://doi.org/10.1016/j.iswa.2025.200501

Benson, C., Obasi, I. C., Akinwande, D. V., & Ile, C. (2024). The impact of interventions on health, safety and environment in the process industry. Heliyon, 10(1), e23604. https://doi.org/10.1016/j.heliyon.2023.e23604

Dunn, M., Munoz, I., & Jarrahi, M. H. (2023). Dynamics of flexible work and digital platforms: Task and spatial flexibility in the platform economy. Digital Business, 3(1), 100052. https://doi.org/10.1016/j.digbus.2022.100052

Espina-Romero, L., Gutiérrez Hurtado, H., Ríos Parra, D., Vilchez Pirela, R. A., Talavera-Aguirre, R., & Ochoa-Díaz, A. (2024). Challenges and Opportunities in the Implementation of AI in Manufacturing: A Bibliometric Analysis. Sci, 6(4). https://doi.org/10.3390/sci6040060

Fede, G., Sgarbossa, F., & Paltrinieri, N. (2024). Integrating production and maintenance planning in process industries using Digital Twin: A literature review. IFAC-PapersOnLine, 58(19), 151–156. https://doi.org/10.1016/j.ifacol.2024.09.124

Gautam, A., Aryal, M. R., Deshpande, S., Padalkar, S., Nikolaenko, M., Tang, M., & Anand, S. (2025). IIoT-enabled digital twin for legacy and smart factory machines with LLM integration. Journal of Manufacturing Systems, 80(March), 511–523. https://doi.org/10.1016/j.jmsy.2025.03.022

Handoyo, S., Suharman, H., Ghani, E. K., & Soedarsono, S. (2023). A business strategy, operational efficiency, ownership structure, and manufacturing performance: The moderating role of market uncertainty and competition intensity and its implication on open innovation. Journal of Open Innovation: Technology, Market, and Complexity, 9(2), 100039. https://doi.org/10.1016/j.joitmc.2023.100039

Häring, K., Pimentel, C., & Teixeira, L. (2023). Industry 4.0 Implementation in Small- and Medium-Sized Enterprises: Recommendations Extracted from a Systematic Literature Review with a Focus on Maturity Models. Logistics, 7(4). https://doi.org/10.3390/logistics7040099

Hauashdh, A., Nagapan, S., Jailani, J., & Gamil, Y. (2024). An integrated framework for sustainable and efficient building maintenance operations aligning with climate change, SDGs, and emerging technology. Results in Engineering, 21(August 2023), 101822. https://doi.org/10.1016/j.rineng.2024.101822

Islam, S. S., Lestari, T., Fitriani, A., & Wardani, D. A. (2020). Analisis Preventive Maintenance Pada Mesin Produksi dengan Metode Fuzzy FMEA. JTT (Jurnal Teknologi Terpadu), 8(1), 13–20. https://doi.org/10.32487/jtt.v8i1.766

Kandoi, A., Makwana, J., & Student, U. (2023). Optimizing Production Efficiency: A Case Study on Machine Downtime Analysis and Implementation of Quality Control Tools and Action Plans. International Journal for Research in Engineering Application & Management (IJREAM), 08(11), 2454–9150. https://doi.org/10.35291/2454-9150.2023.0031

Kobbacy, K. A. H. (2012). Application of Artificial Intelligence in maintenance modelling and management. IFAC Proceedings Volumes (IFAC-PapersOnline), 45(31), 54–59. https://doi.org/10.3182/20121122-2-ES-4026.00046

Molęda, M., Małysiak-Mrozek, B., Ding, W., Sunderam, V., & Mrozek, D. (2023). From Corrective to Predictive Maintenance—A Review of Maintenance Approaches for the Power Industry. Sensors, 23(13). https://doi.org/10.3390/s23135970

Nawir, R., Dwianda, Y., Febrianton, A., & Irwan, P. (2022). The Effect of Misalignment to Vibration, Electric Current and Shaft Rotation Speed on Gear Transmission. The Journal of Ocean, Mechanical and Aerospace -Science and Engineering- (JOMAse), 66(1), 14–19. https://doi.org/10.36842/jomase.v66i1.278

Nunes, P., Santos, J., & Rocha, E. (2023). Challenges in predictive maintenance – A review. CIRP Journal of Manufacturing Science and Technology, 40, 53–67. https://doi.org/10.1016/j.cirpj.2022.11.004

Psarommatis, F., May, G., & Azamfirei, V. (2023). Envisioning maintenance 5.0: Insights from a systematic literature review of Industry 4.0 and a proposed framework. Journal of Manufacturing Systems, 68(April), 376–399. https://doi.org/10.1016/j.jmsy.2023.04.009

Putri, S. R., & Widjajati, E. P. (2021). Analisis Resiko Keselamatan Kerja Pada Departemen Perawatan Mesin Potong Pt. Xyz Dengan Metode Hazard and Operability Study (Hazop). Juminten, 2(2), 156–167. https://doi.org/10.33005/juminten.v2i2.246

Rikala, P., Braun, G., Järvinen, M., Stahre, J., & Hämäläinen, R. (2024). Understanding and measuring skill gaps in Industry 4.0 — A review. Technological Forecasting and Social Change, 201(June 2023). https://doi.org/10.1016/j.techfore.2024.123206

Rojek, I., Jasiulewicz-Kaczmarek, M., Piechowski, M., & Mikołajewski, D. (2023). An Artificial Intelligence Approach for Improving Maintenance to Supervise Machine Failures and Support Their Repair. Applied Sciences (Switzerland), 13(8). https://doi.org/10.3390/app13084971

Romiyadi, R., Dwianda, Y., & Mustika, W. S. (2023). Pengaruh Misalignment Terhadap Arus Listrik dan Putaran Poros pada Komponen Transmisi Sproket dan Rantai. Quantum Teknika : Jurnal Teknik Mesin Terapan, 5(1), 1–7. https://doi.org/10.18196/jqt.v5i1.17403

Romiyadi, R., & Irwan, P. (2020). The Effect of Misalignment to Vibration, Electric Current and Shaft Rotation Speed on The Coupling Transmision. Jurnal Teknik Mesin, 10(2), 73–78. https://doi.org/10.21063/jtm.2020.v10.i2.73-78

Salawu, E. Y., Awoyemi, O. O., Akerekan, O. E., Afolalu, S. A., Kayode, J. F., Ongbali, S. O., Airewa, I., & Edun, B. M. (2023). Impact of Maintenance on Machine Reliability: A Review. E3S Web of Conferences, 430, 1–12. https://doi.org/10.1051/e3sconf/202343001226

Scaife, A. D. (2024). Improve predictive maintenance through the application of artificial intelligence: A systematic review. Results in Engineering, 21(October 2023), 101645. https://doi.org/10.1016/j.rineng.2023.101645

Theissler, A., Pérez-Velázquez, J., Kettelgerdes, M., & Elger, G. (2021). Predictive maintenance enabled by machine learning: Use cases and challenges in the automotive industry. Reliability Engineering and System Safety, 215, 107864. https://doi.org/10.1016/j.ress.2021.107864

Tzvetkova, S., & Klaassens, B. (2001). Preventive Maintenance for Industrial Application. IFAC Proceedings Volumes, 34(29), 3–8. https://doi.org/10.1016/s1474-6670(17)32784-2

Ucar, A., Karakose, M., & Kırımça, N. (2024). applied sciences Artificial Intelligence for Predictive Maintenance Applications :

Vilarinho, S., Lopes, I., & Oliveira, J. A. (2017). Preventive Maintenance Decisions through Maintenance Optimization Models: A Case Study. Procedia Manufacturing, 11(June), 1170–1177. https://doi.org/10.1016/j.promfg.2017.07.241

Zopounidis, C., & Lemonakis, C. (2024). The company of the future: Integrating sustainability, growth, and profitability in contemporary business models. Development and Sustainability in Economics and Finance, 1(May), 100003. https://doi.org/10.1016/j.dsef.2024.100003

Downloads

Published

2025-07-15

How to Cite

Romiyadi, R. (2025). Perawatan Mesin untuk Meningkatkan Performa dan Keandalan Mesin dan Peralatan. Jurnal Teknik Industri Terintegrasi (JUTIN), 8(3), 3619–3626. https://doi.org/10.31004/jutin.v8i3.47078

Issue

Section

Articles of Research

Similar Articles

<< < 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.