Pengaruh Pola Anyaman terhadap Sifat Mekanik Serat Kulit Pohon Melinjo untuk Pengembangan Produk Tas Noken

Authors

  • Johanis M Ramandey Universitas Satya Wiyata Mandala
  • Suryadi Suryadi Universitas Satya Wiyata Mandala
  • Hans F Liborang Universitas Satya Wiyata Mandala
  • Wardhana Wahyu Dharsono Universitas Satya Wiyata Mandala

DOI:

https://doi.org/10.31004/jutin.v8i2.40122

Keywords:

Melinjo tree bark fiber, Noken bags, Local wisdom Keyword, Tensile strength, Weave pattern

Abstract

This study aims to optimize the tensile strength of woven melinjo tree bark fibers in noken bag products as a superior regional product based on local wisdom. The research method used is an experimental approach with stages of literature study, material selection, determination of test parameters, creation of woven patterns, and tensile strength testing. Melinjo tree bark fibers were woven in three different patterns: 1-1, 1-2, and 2-2. The results showed that the weaving pattern significantly influences the mechanical properties of the fibers. The 2-2 weave pattern performed best in terms of tensile strength, with tensile stresses ranging from 24.8-25.2 N/mm². The 1-1 weave pattern had the highest elasticity and flexibility with 2.8% strain and 2.8% flexibility. The optimal weave pattern depends on the specific application and product requirements. These findings can serve as a basis for future development of melinjo tree bark fiber-based products, particularly noken bags as a superior regional product based on local wisdom.

References

Sheeba, K. R. J., Priya, R. K., Arunachalam, K. P., Shobana, S., Avudaiappan, S., & Flores, E. S. (2023). Examining the physico-chemical, structural and thermo-mechanical properties of naturally occurring Acacia pennata fibres treated with KMnO4. Dental Science Reports. https://doi.org/10.1038/s41598-023-46989-x

Trindade, W. G., Hoareau, W., Razera, I. A. T., Ruggiero, R., Frollini, E., & Castellan, A. (2004). Phenolic Thermoset Matrix Reinforced with Sugar Cane Bagasse Fibers: Attempt to Develop a New Fiber Surface Chemical Modification Involving Formation of Quinones Followed by Reaction with Furfuryl Alcohol. Macromolecular Materials and Engineering. https://doi.org/10.1002/MAME.200300320

Lohtander, T., Koso, T., Huynh, N., Hjelt, T., Gestranius, M., King, A. W. T., Österberg, M., & Arola, S. (2024). Bioactive Fiber Foam Films from Cellulose and Willow Bark Extract with Improved Water Tolerance. ACS Omega. https://doi.org/10.1021/acsomega.3c08906

Sadeghi, M. R., Varkiyani, S. M. H., & Jeddi, A. A. A. (2023). Machine learning in optimization of nonwoven fabric bending rigidity in spunlace production line. Dental Science Reports. https://doi.org/10.1038/s41598-023-44571-z

Mishra, S. C. (2009). Low Cost Polymer Composites with Rural Resources. Journal of Reinforced Plastics and Composites. https://doi.org/10.1177/0731684408092372

Song, P., Dai, J., Chen, G., Yu, Y., Fang, Z., Lei, W., Fu, S., Wang, H., Chen, Z., & Chen, Z. (2018). Bioinspired Design of Strong, Tough, and Thermally Stable Polymeric Materials via Nanoconfinement. ACS Nano. https://doi.org/10.1021/ACSNANO.8B04002

Sinha-Ray, S., Khansari, S., Yarin, A. L., & Pourdeyhimi, B. (2012). Effect of Chemical and Physical Cross-Linking on Tensile Characteristics of Solution-Blown Soy Protein Nanofiber Mats. Industrial & Engineering Chemistry Research. https://doi.org/10.1021/IE302359X

Liu, X., & Tan, Q. (2023). The evolutionary process of the development path of cultural tourism industry integration from a non-linear perspective. Applied Mathematics and Nonlinear Sciences. https://doi.org/10.2478/amns.2023.1.00272

Balachandran, G. B., Narayanasamy, P., Alexander, A. B., David, P. W., Mariappan, R. K., Ramachandran, M. E., Indran, S., Rangappa, S. M., & Siengchin, S. (2023). Multi-analytical investigation of the physical, chemical, morphological, tensile, and structural properties of Indian mulberry (Morinda tinctoria) bark fibers. Heliyon. https://doi.org/10.1016/j.heliyon.2023.e21239

Lin, Y.-S., & Lin, M.-H. (2022). Exploring Indigenous Craft Materials and Sustainable Design—A Case Study Based on Taiwan Kavalan Banana Fibre. Sustainability. https://doi.org/10.3390/su14137872

Deb, S. K., Mohanty, P. P., & Valeri, M. (2022). Promoting family business in handicrafts through local tradition and culture: an innovative approach. Journal of Family Business Management. https://doi.org/10.1108/jfbm-10-2021-0131

Lianto, F., Husin, D., Thedyardi, C., Choandi, M., & Trisno, R. (2021). A retrospective towards a biodegradable material concept for future Indonesian sustainable architecture. City, Territory and Architecture. https://doi.org/10.1186/S40410-021-00142-1

Ringas, C., Tasiopoulou, E., Kaplanidi, D., Partarakis, N., Zabulis, X., Zidianakis, E., Patakos, A., Patsiouras, N., Karuzaki, E., Foukarakis, M., Adami, I., Cadi, N., Baka, E., Magnenat-Thalmann, N., Makrygiannis, D., Glushkova, A., Manitsaris, S., Nitti, V., & Panesse, L. (2022). Traditional Craft Training and Demonstration in Museums. Heritage. https://doi.org/10.3390/heritage5010025

Downloads

Published

2025-04-10

How to Cite

Ramandey , J. M., Suryadi , S., Liborang, H. F., & Dharsono, W. W. (2025). Pengaruh Pola Anyaman terhadap Sifat Mekanik Serat Kulit Pohon Melinjo untuk Pengembangan Produk Tas Noken. Jurnal Teknik Industri Terintegrasi (JUTIN), 8(2), 1928–1936. https://doi.org/10.31004/jutin.v8i2.40122

Issue

Section

Articles of Research

Similar Articles

1 2 3 4 > >> 

You may also start an advanced similarity search for this article.