Penerapan Association Rule-Market Basket Analysis (AR-MBA) Dalam Menentukan Strategi Product Bundling: Studi Kasus Pada Minimarket AKPRIND MART

Authors

  • Irfan Mustofa IST AKPRIND Yogyakarta
  • Agus Hindarto Wibowo Program Studi Teknologi Industri, Program Pendidikan Vokasi, Institut Sains & Teknologi AKPRIND, Yogyakarta
  • Kartinasari Ayuhikmatin Sekarjati Jurusan Teknik Industri, Fakultas Teknologi Industri, Institut Sains & Teknologi AKPRIND, Yogyakarta
  • Nafis Sinta Makhulina Jurusan Teknik Industri, Fakultas Teknologi Industri, Institut Sains & Teknologi AKPRIND, Yogyakarta
  • Rio Dewangga Program Studi Teknologi Industri, Program Pendidikan Vokasi, Institut Sains & Teknologi AKPRIND, Yogyakarta

DOI:

https://doi.org/10.31004/jutin.v7i1.24873

Abstract

Data has become the most valuable component to be processed in order to provide usable information in the modern world of rapidly developing technology. When it comes to more in-depth or clear data analysis, technology is quite useful. Real governmental, social, and commercial operations use this technology; in the case of business, this is demonstrated by the quantity of minimarkets operating throughout Indonesia. As a result, it greatly increases commercial competition. Consequently, in order to compete, a study using the available data must be conducted. The Association Rule-Market Basket Analysis method was employed in this study to ascertain the shopping interests of the participants. According to the study's findings, two rules 60% (washing equipment and foodstuffs) and 62% (medicine and bottled drinks) showed the greatest confidence values. Based on these findings, the minimarket can decide what has to be done in terms of Product Bundling, setting up the layout and other tasks

References

Arianto, S., & Nugroho, A. J. (2022). Association Rule-Market Basket Analisis (AR-MBA) Untuk Menganalisis Keputusan Dalam Pembelian Sayur. Cakrawala Ilmiah, 1(10). http://bajangjournal.com/index.php/JCI

Da?aslani, H., & Ba?ar, Ö. D. (2022). Association Rules Mining on Retail Data. EKOIST Journal of Econometrics and Statistics, 0(37), 199–211. https://doi.org/10.26650/EKOIST.2022.37.1145052

Kotu, V., & Deshpande, B. (2015). Predictive analytics and data mining?: concepts and practice with RapidMiner.

Larose, D. T. (2005). Discovering Knowledge in Data: An Introduction to Data Mining (1st ed.). John Wiley & Sons.

Liu, H., Shu, Q., Xiong, H., & Yang, Y. (2022). Data Classification Algorithm Based on Association Rules from the Perspective of Data Mining. IEEE International Conference on Knowledge Engineering and Communication Systems, ICKES 2022. https://doi.org/10.1109/ICKECS56523.2022.10060274

Martinez-Plumed, F., Contreras-Ochando, L., Ferri, C., Hernandez-Orallo, J., Kull, M., Lachiche, N., Ramirez-Quintana, M. J., & Flach, P. (2021). CRISP-DM Twenty Years Later: From Data Mining Processes to Data Science Trajectories. IEEE Transactions on Knowledge and Data Engineering, 33(8), 3048–3061. https://doi.org/10.1109/TKDE.2019.2962680

Pathan, A. F., Palande, S., Shende, T., Patil, R., & Gutte, P. S. (2019, March 16). A STUDY ON MARKET BASKET ANALYSIS AND ASSOCIATION MINING. Proceedings of National Conference on Machine Learning.

Peker, S., & Kart, Ö. (2023). Transactional data-based customer segmentation applying CRISP-DM methodology: A systematic review. Journal of Data, Information and Management, 5(1–2), 1–21. https://doi.org/10.1007/s42488-023-00085-x

Solano, J. A., Lancheros Cuesta, D. J., Umaña Ibáñez, S. F., & Coronado-Hernández, J. R. (2021). Predictive models assessment based on CRISP-DM methodology for students performance in Colombia - Saber 11 Test. Procedia Computer Science, 198, 512–517. https://doi.org/10.1016/j.procs.2021.12.278

Valle, M. A., Ruz, G. A., & Morrás, R. (2018). Market basket analysis: Complementing association rules with minimum spanning trees. Expert Systems with Applications, 97, 146–162. https://doi.org/10.1016/J.ESWA.2017.12.028

Wibowo, A. H., Andivas, M., Harits, D., Windyatri, H., & Nugraha, D. S. (2023). A Pattern Analysis on Goods Purchase Relationship for Minimarket’s Customers by Using Association Rule-Market Basket Analysis Method (AR-MBA). Journal of Information Technology Ampera, 4(3), 2774–2121. https://doi.org/10.51519/journalita.v4i3.422

Downloads

Published

2024-01-27

How to Cite

Mustofa, I., Wibowo, A. H., Sekarjati, K. A., Makhulina, N. S., & Dewangga, R. (2024). Penerapan Association Rule-Market Basket Analysis (AR-MBA) Dalam Menentukan Strategi Product Bundling: Studi Kasus Pada Minimarket AKPRIND MART. Jurnal Teknik Industri Terintegrasi (JUTIN), 7(1), 379–386. https://doi.org/10.31004/jutin.v7i1.24873

Issue

Section

Articles of Research