PENGEMBANGAN VAKSIN HIV BERBASIS TANAMAN: PENDEKATAN BIOTEKNOLOGI DALAM PRODUKSI DAN TANTANGANNYA

Authors

  • Laili Fitri Program Studi S1 Farmasi, Fakultas Kedokteran dan Ilmu Kesehatan Universitas Mataram, Indonesia
  • Norina Shaumy Putri Rayes Program Studi S1 Farmasi, Fakultas Kedokteran dan Ilmu Kesehatan Universitas Mataram, Indonesia
  • Acyuta Pramesthi Asmara Sayyidina Syahputri Program Studi S1 Farmasi, Fakultas Kedokteran dan Ilmu Kesehatan Universitas Mataram, Indonesia
  • Nurulfaaidzah Nurulfaaidzah Program Studi S1 Farmasi, Fakultas Kedokteran dan Ilmu Kesehatan Universitas Mataram, Indonesia
  • Rifqi Rizqullah Program Studi S1 Farmasi, Fakultas Kedokteran dan Ilmu Kesehatan Universitas Mataram, Indonesia

DOI:

https://doi.org/10.31004/jkt.v6i2.44763

Keywords:

Bioteknologi, HIV, tanaman, vaksin, vaksin berbasis tanaman

Abstract

Permasalahan utama dalam pengembangan vaksin HIV adalah belum tersedianya vaksin yang efektif meskipun penelitian telah berlangsung selama lebih dari tiga dekade. Tantangan utama produksi vaksin konvensional antara lain biaya tinggi, risiko kontaminasi patogen, serta keterbatasan dalam skala produksi. Oleh karena itu, pendekatan bioteknologi berbasis tanaman menjadi alternatif inovatif yang menawarkan biaya produksi lebih rendah dan keamanan yang lebih baik. Penelitian ini bertujuan untuk meninjau perkembangan vaksin HIV berbasis tanaman, keunggulan, tantangan, serta potensi aplikasinya. Metode yang digunakan adalah studi literatur deskriptif kualitatif dengan pengumpulan data dari berbagai database elektronik seperti Google Scholar, PubMed, Scopus, dan Scispace pada periode Januari hingga April 2023. Hasil penelitian menunjukkan bahwa beberapa spesies tanaman seperti Nicotiana benthamiana, Nicotiana tabacum, Physcomitrella patens, dan Arabidopsis thaliana telah berhasil direkayasa untuk mengekspresikan antigen atau antibodi HIV, seperti gp120, gp41, dan p24, melalui metode ekspresi transient, transformasi genetik kloroplas, dan rekayasa genetika. Vaksin yang dihasilkan mampu menginduksi respons imun humoral dan seluler pada hewan uji. Namun, tantangan yang dihadapi meliputi stabilitas antigen, keragaman genetik HIV, regulasi, dan penerimaan masyarakat. Vaksin HIV berbasis tanaman memiliki potensi besar sebagai solusi inovatif, namun masih memerlukan penelitian lanjutan untuk mengatasi tantangan teknis dan regulasi sebelum dapat diimplementasikan secara luas.

References

Ajbani, S. P. (2016). HIV Vaccine Development: Current Scenario and Future Prospects. Journal of AIDS & Clinical Research, 7(11). https://doi.org/10.4172/2155-6113.1000626

Andrabi, R., Bhiman, J. N., & Burton, D. R. (2018). Strategies for a multi-stage neutralizing antibody-based HIV vaccine. In Current Opinion in Immunology (Vol. 53, pp. 143–151). Elsevier Ltd. https://doi.org/10.1016/j.coi.2018.04.025

Behbahani, M. (2014). Evaluation of anti-HIV-1 activity of a new iridoid glycoside isolated from Avicenna marina, in vitro. International Immunopharmacology, 23(1), 262–266. https://doi.org/10.1016/j.intimp.2014.09.003

Excler, J. L., Robb, M. L., & Kim, J. H. (2015). Prospects for a globally effective HIV-1 vaccine. In Vaccine (Vol. 33, pp. D4–D12). Elsevier Ltd. https://doi.org/10.1016/j.vaccine.2015.03.059

Grandits, M., Grünwald-Gruber, C., Gastine, S., Standing, J. F., Reljic, R., Teh, A. Y. H., & Ma, J. K. C. (2023). Improving the efficacy of plant-made anti-HIV monoclonal antibodies for clinical use. Frontiers in Plant Science, 14. https://doi.org/10.3389/fpls.2023.1126470

Haynes, B. F. (2015). New approaches to HIV vaccine development. In Current Opinion in Immunology (Vol. 35, pp. 39–47). Elsevier Ltd. https://doi.org/10.1016/j.coi.2015.05.007

Haynes, B. F., Moody, M. A., Alam, M., Bonsignori, M., Verkoczy, L., Ferrari, G., Gao, F., Tomaras, G. D., Liao, H. X., & Kelsoe, G. (2014). Progress in HIV-1 vaccine development. In Journal of Allergy and Clinical Immunology (Vol. 134, Issue 1, pp. 3–10). Mosby Inc. https://doi.org/10.1016/j.jaci.2014.04.025

Hernández, M., Rosas, G., Cervantes, J., Fragoso, G., Rosales-Mendoza, S., & Sciutto, E. (2014). Transgenic plants: A 5-year update on oral antipathogen vaccine development. In Expert Review of Vaccines (Vol. 13, Issue 12, pp. 1523–1536). Expert Reviews Ltd. https://doi.org/10.1586/14760584.2014.953064

Hsu, D. C., & O’Connell, R. J. (2017). Progress in HIV vaccine development. In Human Vaccines and Immunotherapeutics (Vol. 13, Issue 5, pp. 1018–1030). Taylor and Francis Inc. https://doi.org/10.1080/21645515.2016.1276138

Jorge, S., & Dellagostin, O. A. (2017). The development of veterinary vaccines: a review of traditional methods and modern biotechnology approaches. Biotechnology Research and Innovation, 1(1), 6–13. https://doi.org/10.1016/j.biori.2017.10.001

Kessans, S. A., Linhart, M. D., Matoba, N., & Mor, T. (2013). Biological and biochemical characterization of HIV-1 Gag/dgp41 virus-like particles expressed in Nicotiana benthamiana. Plant Biotechnology Journal, 11(6), 681–690. https://doi.org/10.1111/pbi.12058

Lebel, M. ève, Chartrand, K., Leclerc, D., & Lamarre, A. (2015). Plant viruses as nanoparticle-based vaccines and adjuvants. In Vaccines (Vol. 3, Issue 3, pp. 620–637). MDPI AG. https://doi.org/10.3390/vaccines3030620

Lindh, I., Bråve, A., Hallengärd, D., Hadad, R., Kalbina, I., Strid, Å., & Andersson, S. (2014). Oral delivery of plant-derived HIV-1 p24 antigen in low doses shows a superior priming effect in mice compared to high doses. Vaccine, 32(20), 2288–2293. https://doi.org/10.1016/j.vaccine.2014.02.073

Liu, Y., & Chen, C. (2016). Role of nanotechnology in HIV/AIDS vaccine development. In Advanced Drug Delivery Reviews (Vol. 103, pp. 76–89). Elsevier B.V. https://doi.org/10.1016/j.addr.2016.02.010

Lotter-Stark, H. C. T., Rybicki, E. P., & Chikwamba, R. K. (2012). Plant made anti-HIV microbicides-A field of opportunity. In Biotechnology Advances (Vol. 30, Issue 6, pp. 1614–1626). https://doi.org/10.1016/j.biotechadv.2012.06.002

Margolin, E., Chapman, R., Meyers, A. E., van Diepen, M. T., Ximba, P., Hermanus, T., Crowther, C., Weber, B., Morris, L., Williamson, A. L., & Rybicki, E. P. (2019). Production and Immunogenicity of Soluble Plant-Produced HIV-1 Subtype C Envelope gp140 Immunogens. Frontiers in Plant Science, 10. https://doi.org/10.3389/fpls.2019.01378

Mathew, M., & Thomas, J. (2023). Tobacco-Based Vaccines, Hopes, and Concerns: A Systematic Review. In Molecular Biotechnology (Vol. 65, Issue 7, pp. 1023–1051). Springer. https://doi.org/10.1007/s12033-022-00627-5

Monreal-Escalante, E., Ramos-Vega, A., Angulo, C., & Bañuelos-Hernández, B. (2022). Plant-Based Vaccines: Antigen Design, Diversity, and Strategies for High Level Production. In Vaccines (Vol. 10, Issue 1). MDPI. https://doi.org/10.3390/vaccines10010100

Orellana-Escobedo, L., Rosales-Mendoza, S., Romero-Maldonado, A., Parsons, J., Decker, E. L., Monreal-Escalante, E., Moreno-Fierros, L., & Reski, R. (2015). An Env-derived multi-epitope HIV chimeric protein produced in the moss Physcomitrella patens is immunogenic in mice. Plant Cell Reports, 34(3), 425–433. https://doi.org/10.1007/s00299-014-1720-6

Oyarzún, P., & Kobe, B. (2016). Recombinant and epitope-based vaccines on the road to the market and implications for vaccine design and production. Human Vaccines and Immunotherapeutics, 12(3), 763–767. https://doi.org/10.1080/21645515.2015.1094595

Pandey, A., & Tripathi, S. (n.d.). A review on Anti-HIV activities of compounds isolated from the medicinal plant and advantage of plant tissue culture in development of Anti-HIV 1 (Vol. 2, Issue 2).

Rahimian, N., Miraei, H. R., Amiri, A., Ebrahimi, M. S., Nahand, J. S., Tarrahimofrad, H., Hamblin, M. R., Khan, H., & Mirzaei, H. (2021). Plant-based vaccines and cancer therapy: Where are we now and where are we going? In Pharmacological Research (Vol. 169). Academic Press. https://doi.org/10.1016/j.phrs.2021.105655

Rezaei, T., Khalili, S., Baradaran, B., Mosafer, J., Rezaei, S., Mokhtarzadeh, A., & de la Guardia, M. (2019). Recent advances on HIV DNA vaccines development: Stepwise improvements to clinical trials. In Journal of Controlled Release (Vol. 316, pp. 116–137). Elsevier B.V. https://doi.org/10.1016/j.jconrel.2019.10.045

Rios, A. (2018). Fundamental challenges to the development of a preventive HIV vaccine. In Current Opinion in Virology (Vol. 29, pp. 26–32). Elsevier B.V. https://doi.org/10.1016/j.coviro.2018.02.004

Rosales-Mendoza, S., Rubio-Infante, N., Govea-Alonso, D. O., & Moreno-Fierros, L. (2012). Current status and perspectives of plant-based candidate vaccines against the human immunodeficiency virus (HIV). In Plant Cell Reports (Vol. 31, Issue 3, pp. 495–511). https://doi.org/10.1007/s00299-011-1194-8

Rosales-Mendoza, S., Rubio-Infante, N., Monreal-Escalante, E., Govea-Alonso, D. O., García-Hernández, A. L., Salazar-González, J. A., González-Ortega, O., Paz-Maldonado, L. M. T., & Moreno-Fierros, L. (2014). Chloroplast expression of an HIV envelop-derived multiepitope protein: Towards a multivalent plant-based vaccine. Plant Cell, Tissue and Organ Culture, 116(1), 111–123. https://doi.org/10.1007/s11240-013-0387-y

Rubio-Infante, N., Govea-Alonso, D. O., Romero-Maldonado, A., García-Hernández, A. L., Ilhuicatzi-Alvarado, D., Salazar-González, J. A., Korban, S. S., Rosales-Mendoza, S., & Moreno-Fierros, L. (2015). A Plant-Derived Multi-HIV Antigen Induces Broad Immune Responses in Orally Immunized Mice. Molecular Biotechnology, 57(7), 662–674. https://doi.org/10.1007/s12033-015-9856-3

Salehi, B., Anil Kumar, N. V., Şener, B., Sharifi-Rad, M., Kılıç, M., Mahady, G. B., Vlaisavljevic, S., Iriti, M., Kobarfard, F., Setzer, W. N., Ayatollahi, S. A., Ata, A., & Sharifi-Rad, J. (2018). Medicinal plants used in the treatment of human immunodeficiency virus. In International Journal of Molecular Sciences (Vol. 19, Issue 5). MDPI AG. https://doi.org/10.3390/ijms19051459

Sharma, B., Singh, S., & Goel, M. (2022). Evaluation of phytochemicals from Indian traditional medicinal plants as antihiv-1 Drugs. Journal of Human Virology & Retrovirology, 9(3), 84–87. https://doi.org/10.15406/jhvrv.2022.09.00254

Singh, A. A., Pillay, P., Kwezi, L., & Tsekoa, T. L. (2021). A plant-biotechnology approach for producing highly potent anti-HIV antibodies for antiretroviral therapy consideration. Journal of Genetic Engineering and Biotechnology, 19(1). https://doi.org/10.1186/s43141-021-00279-z

Su, H., van Eerde, A., Rimstad, E., Bock, R., Branza-Nichita, N., Yakovlev, I. A., & Clarke, J. L. (2023). Plant-made vaccines against viral diseases in humans and farm animals. In Frontiers in Plant Science (Vol. 14). Frontiers Media S.A. https://doi.org/10.3389/fpls.2023.1170815

Takeyama, N., Kiyono, H., & Yuki, Y. (2015). Plant-based vaccines for animals and humans: recent advances in technology and clinical trials. Therapeutic Advances in Vaccines, 3(5–6), 139–154. https://doi.org/10.1177/2051013615613272

Tremouillaux-Guiller, J., Moustafa, K., Hefferon, K., Gaobotse, G., & Makhzoum, A. (2020). Plant-made HIV vaccines and potential candidates. In Current Opinion in Biotechnology (Vol. 61, pp. 209–216). Elsevier Ltd. https://doi.org/10.1016/j.copbio.2020.01.004

Venkataraman, S., Hefferon, K., Makhzoum, A., & Abouhaidar, M. (2021). Combating human viral diseases: Will plant-based vaccines be the answer? In Vaccines (Vol. 9, Issue 7). MDPI AG. https://doi.org/10.3390/vaccines9070761

Downloads

Published

2025-06-22

Issue

Section

Articles