EKSPRESI PGC-1α PADA GAGAL JANTUNG

Authors

  • Mariyal Qibtiyah Program Studi Fisioterapi, Fakultas Ilmu Keolahragaan dan Kesehatan, Universitas Negeri Makassar

DOI:

https://doi.org/10.31004/jkt.v6i1.37752

Keywords:

PGC-1?, hipertrofi jantung, gagal jantung

Abstract

Jantung memperoleh energi utama dari asam lemak, glukosa, dan laktat, dengan proporsi yang dapat berubah sesuai kondisi fisiologis atau patologis. Penelitian ini bertujuan untuk menganalisis peran dan mekanisme ekspresi PGC-1α (PPARγ co-activator-1α) dalam patogenesis gagal jantung serta mengeksplorasi dampak penurunan ekspresi PGC-1α terhadap metabolisme energi jantung, khususnya dalam konteks perubahan penggunaan substrat energi dari asam lemak ke glukosa pada kondisi hipertrofi jantung patologis. Metode yang digunakan adalah literature review, dengan menganalisis artikel relevan yang diterbitkan dalam lima tahun terakhir (2018-2023) dari jurnal terakreditasi melalui database seperti PubMed dan Scopus. Seleksi dilakukan berdasarkan relevansi, diikuti analisis kualitatif terkait mekanisme ekspresi PGC-1α, gangguan metabolisme energi jantung, dan stres oksidatif pada gagal jantung. Hasil penelitian menunjukkan bahwa jantung memperoleh sebagian besar energinya dari asam lemak (60-90%), dengan kontribusi glukosa dan laktat sekitar 10-40%. PGC-1α memainkan peran penting dalam regulasi biogenesis mitokondria dan metabolisme energi jantung. Pada hipertrofi jantung patologis, terjadi pergeseran substrat energi dari oksidasi asam lemak ke glukosa, yang dikenal sebagai 'switch substrat'. Penurunan ekspresi PGC-1α berkorelasi dengan peningkatan risiko gagal jantung, mempercepat perkembangan kondisi patologis akibat tekanan berlebihan pada jantung. Penelitian ini menegaskan pentingnya PGC-1α dalam menjaga homeostasis energi jantung dan memberikan wawasan tentang potensinya sebagai target terapi pada gagal jantung.

References

Actis Dato, V., Lange, S., & Cho, Y. (2024). Metabolic Flexibility of the Heart: The Role of Fatty Acid Metabolism in Health, Heart Failure, and Cardiometabolic Diseases. International Journal of Molecular Sciences, 25(2), Article 2. https://doi.org/10.3390/ijms25021211

Aggarwal, R., Potel, K. N., McFalls, E. O., Butterick, T. A., & Kelly, R. F. (2022). Novel Therapeutic Approaches Enhance PGC1-alpha to Reduce Oxidant Stress-Inflammatory Signaling and Improve Functional Recovery in Hibernating Myocardium. Antioxidants, 11(11), Article 11. https://doi.org/10.3390/antiox11112155

Aimo, A., Castiglione, V., Borrelli, C., Saccaro, L. F., Franzini, M., Masi, S., Emdin, M., & Giannoni, A. (2020). Oxidative stress and inflammation in the evolution of heart failure: From pathophysiology to therapeutic strategies. European Journal of Preventive Cardiology, 27(5), 494–510. https://doi.org/10.1177/2047487319870344

Ajoolabady, A., Chiong, M., Lavandero, S., Klionsky, D. J., & Ren, J. (2022). Mitophagy in cardiovascular diseases: Molecular mechanisms, pathogenesis, and treatment. Trends in Molecular Medicine, 28(10), 836–849. https://doi.org/10.1016/j.molmed.2022.06.007

Bajaj, J. S., O’Leary, J. G., Lai, J. C., Wong, F., Long, M. D., Wong, R. J., & Kamath, P. S. (2022). Acute-on-Chronic Liver Failure Clinical Guidelines. Official Journal of the American College of Gastroenterology | ACG, 117(2), 225. https://doi.org/10.14309/ajg.0000000000001595

Bisaccia, G., Ricci, F., Gallina, S., Di Baldassarre, A., & Ghinassi, B. (2021). Mitochondrial Dysfunction and Heart Disease: Critical Appraisal of an Overlooked Association. International Journal of Molecular Sciences, 22(2), Article 2. https://doi.org/10.3390/ijms22020614

Bomer, N., Pavez-Giani, M. G., Grote Beverborg, N., Cleland, J. G. F., van Veldhuisen, D. J., & van der Meer, P. (2022). Micronutrient deficiencies in heart failure: Mitochondrial dysfunction as a common pathophysiological mechanism? Journal of Internal Medicine, 291(6), 713–731. https://doi.org/10.1111/joim.13456

Brown, D. A., Perry, J. B., Allen, M. E., Sabbah, H. N., Stauffer, B. L., Shaikh, S. R., Cleland, J. G. F., Colucci, W. S., Butler, J., Voors, A. A., Anker, S. D., Pitt, B., Pieske, B., Filippatos, G., Greene, S. J., & Gheorghiade, M. (2017). Mitochondrial function as a therapeutic target in heart failure. Nature Reviews Cardiology, 14(4), 238–250. https://doi.org/10.1038/nrcardio.2016.203

Chambers, J. M., & Wingert, R. A. (2020). PGC-1? in Disease: Recent Renal Insights into a Versatile Metabolic Regulator. Cells, 9(10), Article 10. https://doi.org/10.3390/cells9102234

Chen, C., Ding, Y., Huang, Q., Zhang, C., Zhao, Z., Zhou, H., Li, D., & Zhou, G. (2024). Relationship between arginine methylation and vascular calcification. Cellular Signalling, 119, 111189. https://doi.org/10.1016/j.cellsig.2024.111189

Chen, L., Qin, Y., Liu, B., Gao, M., Li, A., Li, X., & Gong, G. (2022). PGC-1?-Mediated Mitochondrial Quality Control: Molecular Mechanisms and Implications for Heart Failure. Frontiers in Cell and Developmental Biology, 10. https://doi.org/10.3389/fcell.2022.871357

Cibi, D. M., Bi-Lin, K. W., Shekeran, S. G., Sandireddy, R., Tee, N., Singh, A., Wu, Y., Srinivasan, D. K., Kovalik, J.-P., Ghosh, S., Seale, P., & Singh, M. K. (2020). Prdm16 Deficiency Leads to Age-Dependent Cardiac Hypertrophy, Adverse Remodeling, Mitochondrial Dysfunction, and Heart Failure. Cell Reports, 33(3). https://doi.org/10.1016/j.celrep.2020.108288

Di, W., Lv, J., Jiang, S., Lu, C., Yang, Z., Ma, Z., Hu, W., Yang, Y., & Xu, B. (2018). PGC-1: The Energetic Regulator in Cardiac Metabolism. Current Issues in Molecular Biology, 28(1), Article 1. https://doi.org/10.21775/cimb.028.029

Edelmann, F., Knosalla, C., Mörike, K., Muth, C., Prien, P., & Störk, S. (2018). Chronic Heart Failure. Deutsches Ärzteblatt International, 115(8), 124–130. https://doi.org/10.3238/arztebl.2018.0124

Fontecha-Barriuso, M., Martin-Sanchez, D., Martinez-Moreno, J., Monsalve, M., Ramos, A., Sanchez-Niño, M., Ruiz-Ortega, M., Ortiz, A., & Sanz, A. (2020). The Role of PGC-1? and Mitochondrial Biogenesis in Kidney Diseases. Biomolecules, 10(2), 347. https://doi.org/10.3390/biom10020347

Guignabert, C., Aman, J., Bonnet, S., Dorfmüller, P., Olschewski, A. J., Pullamsetti, S., Rabinovitch, M., Schermuly, R. T., Humbert, M., & Stenmark, K. R. (2024). Pathology and pathobiology of pulmonary hypertension: Current insights and future directions. European Respiratory Journal, 64(4), 2401095. https://doi.org/10.1183/13993003.01095-2024

Guo, Z., Fan, D., Liu, F.-Y., Ma, S.-Q., An, P., Yang, D., Wang, M.-Y., Yang, Z., & Tang, Q.-Z. (2022). NEU1 Regulates Mitochondrial Energy Metabolism and Oxidative Stress Post-myocardial Infarction in Mice via the SIRT1/PGC-1 Alpha Axis. Frontiers in Cardiovascular Medicine, 9. https://doi.org/10.3389/fcvm.2022.821317

Halling, J. F., & Pilegaard, H. (2020). PGC-1?-mediated regulation of mitochondrial function and physiological implications. Applied Physiology, Nutrition, and Metabolism, 45(9), 927–936. https://doi.org/10.1139/apnm-2020-0005

Hou, N., Huang, Y., Cai, S., Yuan, W., Li, L., Liu, X., Zhao, G., Qiu, X., Li, A., Cheng, C., Liu, S., Chen, X., Cai, D., Xie, J., Chen, M., & Luo, C. (2021). Puerarin ameliorated pressure overload-induced cardiac hypertrophy in ovariectomized rats through activation of the PPAR?/PGC-1 pathway. Acta Pharmacologica Sinica, 42(1), 55–67. https://doi.org/10.1038/s41401-020-0401-y

Huang, S., Chen, X., Pan, J., Zhang, H., Ke, J., Gao, L., Yu Chang, A. C., Zhang, J., & Zhang, H. (2023). Hydrogen sulfide alleviates heart failure with preserved ejection fraction in mice by targeting mitochondrial abnormalities via PGC-1?. Nitric Oxide, 136–137, 12–23. https://doi.org/10.1016/j.niox.2023.05.002

Huang, Z., Song, S., Zhang, X., Zeng, L., Sun, A., & Ge, J. (2023). Metabolic substrates, histone modifications, and heart failure. Biochimica et Biophysica Acta (BBA) - Gene Regulatory Mechanisms, 1866(1), 194898. https://doi.org/10.1016/j.bbagrm.2022.194898

Katz, A. M. (2020). Physiology of the Heart. Lippincott Williams & Wilkins.

Keshavarz-Bahaghighat, H., Darwesh, A. M., Sosnowski, D. K., & Seubert, J. M. (2020). Mitochondrial Dysfunction and Inflammaging in Heart Failure: Novel Roles of CYP-Derived Epoxylipids. Cells, 9(7), Article 7. https://doi.org/10.3390/cells9071565

Liu, M., Lv, J., Pan, Z., Wang, D., Zhao, L., & Guo, X. (2022). Mitochondrial dysfunction in heart failure and its therapeutic implications. Frontiers in Cardiovascular Medicine, 9. https://doi.org/10.3389/fcvm.2022.945142

Liu, X., Gao, S., Gao, H., Jiang, X., & Wei, Q. (2021). Mitochondrial Disruption Is Involved in the Effect of Nuclear Factor of Activated T cells, Cytoplasmic 4 on Aggravating Cardiomyocyte Hypertrophy. Journal of Cardiovascular Pharmacology, 77(5), 557. https://doi.org/10.1097/FJC.0000000000000986

Lopaschuk, G. D., Karwi, Q. G., Tian, R., Wende, A. R., & Abel, E. D. (2021). Cardiac Energy Metabolism in Heart Failure. Circulation Research, 128(10), 1487–1513. https://doi.org/10.1161/CIRCRESAHA.121.318241

Manolis, A. S., Manolis, A. A., Manolis, T. A., Apostolaki, N. E., Apostolopoulos, E. J., Melita, H., & Katsiki, N. (2021). Mitochondrial dysfunction in cardiovascular disease: Current status of translational research/clinical and therapeutic implications. Medicinal Research Reviews, 41(1), 275–313. https://doi.org/10.1002/med.21732

Masip, J., Frank Peacok, W., Arrigo, M., Rossello, X., Platz, E., Cullen, L., Mebazaa, A., Price, S., Bueno, H., Di Somma, S., Tavares, M., Cowie, M. R., Maisel, A., Mueller, C., Miró, Ò., & the Acute Heart Failure Study Group of the Association for Acute Cardiovascular Care (ACVC) of the European Society of Cardiology. (2022). Acute Heart Failure in the 2021 ESC Heart Failure Guidelines: A scientific statement from the Association for Acute CardioVascular Care (ACVC) of the European Society of Cardiology. European Heart Journal. Acute Cardiovascular Care, 11(2), 173–185. https://doi.org/10.1093/ehjacc/zuab122

Mendoza, M., Mendoza, M., Lubrino, T., Briski, S., Osuji, I., Cuala, J., Ly, B., Ocegueda, I., Peralta, H., Garcia, B. A., & Zurita-Lopez, C. I. (2023). Arginine Methylation of the PGC-1? C-Terminus Is Temperature-Dependent. Biochemistry, 62(1), 22–34. https://doi.org/10.1021/acs.biochem.2c00363

Morciano, G., Vitto, V. A. M., Bouhamida, E., Giorgi, C., & Pinton, P. (2021). Mitochondrial Bioenergetics and Dynamism in the Failing Heart. Life, 11(5), Article 5. https://doi.org/10.3390/life11050436

Naumenko, N., Mutikainen, M., Holappa, L., Ruas, J. L., Tuomainen, T., & Tavi, P. (2022). PGC-1? deficiency reveals sex-specific links between cardiac energy metabolism and EC-coupling during development of heart failure in mice. Cardiovascular Research, 118(6), 1520–1534. https://doi.org/10.1093/cvr/cvab188

Nauta, J. F., Hummel, Y. M., Tromp, J., Ouwerkerk, W., van der Meer, P., Jin, X., Lam, C. S. P., Bax, J. J., Metra, M., Samani, N. J., Ponikowski, P., Dickstein, K., Anker, S. D., Lang, C. C., Ng, L. L., Zannad, F., Filippatos, G. S., van Veldhuisen, D. J., van Melle, J. P., & Voors, A. A. (2020). Concentric vs. eccentric remodelling in heart failure with reduced ejection fraction: Clinical characteristics, pathophysiology and response to treatment. European Journal of Heart Failure, 22(7), 1147–1155. https://doi.org/10.1002/ejhf.1632

Ng, S. M., Neubauer, S., & Rider, O. J. (2023). Myocardial Metabolism in Heart Failure. Current Heart Failure Reports, 20(1), 63–75. https://doi.org/10.1007/s11897-023-00589-y

Oeing, C. U., Tschöpe, C., & Pieske, B. (2016). Neuerungen der ESC-Leitlinien zur akuten und chronischen Herzinsuffizienz 2016. Herz, 41(8), 655–663. https://doi.org/10.1007/s00059-016-4496-3

Oka, S., Sabry, A. D., Cawley, K. M., & Warren, J. S. (2020). Multiple Levels of PGC-1? Dysregulation in Heart Failure. Frontiers in Cardiovascular Medicine, 7. https://doi.org/10.3389/fcvm.2020.00002

Oka, S., Sreedevi, K., Shankar, T. S., Yedla, S., Arowa, S., James, A., Stone, K. G., Olmos, K., Sabry, A. D., Horiuchi, A., Cawley, K. M., O’very, S. A., Tong, M., Byun, J., Xu, X., Kashyap, S., Mourad, Y., Vehra, O., Calder, D., … Warren, J. S. (2022). PERM1 regulates energy metabolism in the heart via ERR?/PGC?1? axis. Frontiers in Cardiovascular Medicine, 9, 1033457. https://doi.org/10.3389/fcvm.2022.1033457

Oldfield, C. J., Duhamel, T. A., & Dhalla, N. S. (2020). Mechanisms for the transition from physiological to pathological cardiac hypertrophy. Canadian Journal of Physiology and Pharmacology, 98(2), 74–84. https://doi.org/10.1139/cjpp-2019-0566

Panes, J. D., Wendt, A., Ramirez-Molina, O., Castro, P. A., & Fuentealba, J. (2022). Deciphering the role of PGC-1? in neurological disorders: From mitochondrial dysfunction to synaptic failure. Neural Regeneration Research, 17(2), 237. https://doi.org/10.4103/1673-5374.317957

Paramasivam, A., & Vijayashree Priyadharsini, J. (2020). MitomiRs: New emerging microRNAs in mitochondrial dysfunction and cardiovascular disease. Hypertension Research, 43(8), 851–853. https://doi.org/10.1038/s41440-020-0423-3

Peng, K., Yang, F., Qiu, C., Yang, Y., & Lan, C. (2023). Rosmarinic acid protects against lipopolysaccharide-induced cardiac dysfunction via activating Sirt1/PGC-1? pathway to alleviate mitochondrial impairment. Clinical and Experimental Pharmacology and Physiology, 50(3), 218–227. https://doi.org/10.1111/1440-1681.13734

Persad, K. L., & Lopaschuk, G. D. (2022). Energy Metabolism on Mitochondrial Maturation and Its Effects on Cardiomyocyte Cell Fate. Frontiers in Cell and Developmental Biology, 10, 886393. https://doi.org/10.3389/fcell.2022.886393

Ramadhan, A. Y., & Soetikno, V. (2024). Molecular Adaptation of Cardiac Remodeling in Metabolic Syndrome: Focus on AMPK, SIRT1 and PGC-1a. Molecular and Cellular Biomedical Sciences, 8(1), Article 1. https://doi.org/10.21705/mcbs.v8i1.367

Ranjbarvaziri, S., Kooiker, K. B., Ellenberger, M., Fajardo, G., Zhao, M., Vander Roest, A. S., Woldeyes, R. A., Koyano, T. T., Fong, R., Ma, N., Tian, L., Traber, G. M., Chan, F., Perrino, J., Reddy, S., Chiu, W., Wu, J. C., Woo, J. Y., Ruppel, K. M., … Bernstein, D. (2021). Altered Cardiac Energetics and Mitochondrial Dysfunction in Hypertrophic Cardiomyopathy. Circulation, 144(21), 1714–1731. https://doi.org/10.1161/CIRCULATIONAHA.121.053575

Ribas, G. S., & Vargas, C. R. (2022). Evidence that Oxidative Disbalance and Mitochondrial Dysfunction are Involved in the Pathophysiology of Fatty Acid Oxidation Disorders. Cellular and Molecular Neurobiology, 42(3), 521–532. https://doi.org/10.1007/s10571-020-00955-7

Riehle, C., & Abel, E. D. (2012). PGC-1 Proteins and Heart Failure. Trends in Cardiovascular Medicine, 22(4), 98–105. https://doi.org/10.1016/j.tcm.2012.07.003

Ritterhoff, J., & Tian, R. (2023). Metabolic mechanisms in physiological and pathological cardiac hypertrophy: New paradigms and challenges. Nature Reviews Cardiology, 20(12), 812–829. https://doi.org/10.1038/s41569-023-00887-x

Rius-Pérez, S., Torres-Cuevas, I., Millán, I., Ortega, Á. L., & Pérez, S. (2020). PGC-1?, Inflammation, and Oxidative Stress: An Integrative View in Metabolism. Oxidative Medicine and Cellular Longevity, 2020(1), 1452696. https://doi.org/10.1155/2020/1452696

Rosca, M. G., & Hoppel, C. L. (2013). Mitochondrial dysfunction in heart failure. Heart Failure Reviews, 18(5), 607–622. https://doi.org/10.1007/s10741-012-9340-0

Schilling, J. D. (2015). The Mitochondria in Diabetic Heart Failure: From Pathogenesis to Therapeutic Promise. Antioxidants & Redox Signaling, 22(17), 1515–1526. https://doi.org/10.1089/ars.2015.6294

Seo, D. Y., Kwak, H.-B., Kim, A. H., Park, S. H., Heo, J. W., Kim, H. K., Ko, J. R., Lee, S. J., Bang, H. S., Sim, J. W., Kim, M., & Han, J. (2020). Cardiac adaptation to exercise training in health and disease. Pflügers Archiv - European Journal of Physiology, 472(2), 155–168. https://doi.org/10.1007/s00424-019-02266-3

Sui, Y.-B., Xiu, J., Wei, J.-X., Pan, P.-P., Sun, B.-H., & Liu, L. (2021). Shen Qi Li Xin formula improves chronic heart failure through balancing mitochondrial fission and fusion via upregulation of PGC-1?. The Journal of Physiological Sciences, 71(1), 32. https://doi.org/10.1186/s12576-021-00816-y

Tham, Y. K., Bernardo, B. C., Ooi, J. Y. Y., Weeks, K. L., & McMullen, J. R. (2015). Pathophysiology of cardiac hypertrophy and heart failure: Signaling pathways and novel therapeutic targets. Archives of Toxicology, 89(9), 1401–1438. https://doi.org/10.1007/s00204-015-1477-x

Wasyluk, W., Nowicka-St??ka, P., & Zwolak, A. (2021). Heart Metabolism in Sepsis-Induced Cardiomyopathy—Unusual Metabolic Dysfunction of the Heart. International Journal of Environmental Research and Public Health, 18(14), Article 14. https://doi.org/10.3390/ijerph18147598

Wu, C., Zhang, Z., Zhang, W., & Liu, X. (2022). Mitochondrial dysfunction and mitochondrial therapies in heart failure. Pharmacological Research, 175, 106038. https://doi.org/10.1016/j.phrs.2021.106038

Xiang, K., Qin, Z., Zhang, H., & Liu, X. (2020). Energy Metabolism in Exercise-Induced Physiologic Cardiac Hypertrophy. Frontiers in Pharmacology, 11. https://doi.org/10.3389/fphar.2020.01133

Yamamoto, T., & Sano, M. (2022). Deranged Myocardial Fatty Acid Metabolism in Heart Failure. International Journal of Molecular Sciences, 23(2), Article 2. https://doi.org/10.3390/ijms23020996

Yang, D., Liu, H.-Q., Liu, F.-Y., Guo, Z., An, P., Wang, M.-Y., Yang, Z., Fan, D., & Tang, Q.-Z. (2022). Mitochondria in Pathological Cardiac Hypertrophy Research and Therapy. Frontiers in Cardiovascular Medicine, 8. https://doi.org/10.3389/fcvm.2021.822969

Yu, S., Qian, H., Tian, D., Yang, M., Li, D., Xu, H., Chen, J., Yang, J., Hao, X., Liu, Z., Zhong, J., Yang, H., Chen, X., Min, X., & Chen, J. (2023). Linggui Zhugan Decoction activates the SIRT1-AMPK-PGC1? signaling pathway to improve mitochondrial and oxidative damage in rats with chronic heart failure caused by myocardial infarction. Frontiers in Pharmacology, 14. https://doi.org/10.3389/fphar.2023.1074837

Zhang, B., Tan, Y., Zhang, Z., Feng, P., Ding, W., Wang, Q., Liang, H., Duan, W., Wang, X., Yu, S., Liu, J., Yi, D., Sun, Y., & Yi, W. (2020). Novel PGC-1?/ATF5 Axis Partly Activates UPRmt and Mediates Cardioprotective Role of Tetrahydrocurcumin in Pathological Cardiac Hypertrophy. Oxidative Medicine and Cellular Longevity, 2020(1), 9187065. https://doi.org/10.1155/2020/9187065

Zhang, H., Jamieson, K. L., Grenier, J., Nikhanj, A., Tang, Z., Wang, F., Wang, S., Seidman, J. G., Seidman, C. E., Thompson, R., Seubert, J. M., & Oudit, G. Y. (2022). Myocardial Iron Deficiency and Mitochondrial Dysfunction in Advanced Heart Failure in Humans. Journal of the American Heart Association, 11(11), e022853. https://doi.org/10.1161/JAHA.121.022853

Zhang, Z., Zhang, X., Meng, L., Gong, M., Li, J., Shi, W., Qiu, J., Yang, Y., Zhao, J., Suo, Y., Liang, X., Wang, X., Tse, G., Jiang, N., Li, G., Zhao, Y., & Liu, T. (2021). Pioglitazone Inhibits Diabetes-Induced Atrial Mitochondrial Oxidative Stress and Improves Mitochondrial Biogenesis, Dynamics, and Function Through the PPAR-?/PGC-1? Signaling Pathway. Frontiers in Pharmacology, 12. https://doi.org/10.3389/fphar.2021.658362

Zhou, B., & Tian, R. (2018). Mitochondrial dysfunction in pathophysiology of heart failure. The Journal of Clinical Investigation, 128(9), 3716–3726. https://doi.org/10.1172/JCI120849

Zhou, Q., Xu, H., Yan, L., Ye, L., Zhang, X., Tan, B., Yi, Q., Tian, J., & Zhu, J. (2021). PGC-1? promotes mitochondrial respiration and biogenesis during the differentiation of hiPSCs into cardiomyocytes. Genes & Diseases, 8(6), 891–906. https://doi.org/10.1016/j.gendis.2020.12.006

Zhu, Z., Li, H., Chen, W., Cui, Y., Huang, A., & Qi, X. (2020). Perindopril Improves Cardiac Function by Enhancing the Expression of SIRT3 and PGC-1? in a Rat Model of Isoproterenol-Induced Cardiomyopathy. Frontiers in Pharmacology, 11. https://doi.org/10.3389/fphar.2020.00094

Downloads

Published

2025-03-28

Issue

Section

Articles