HYPOBARIC HYPOXIA, INTERVENTIONS AND OUTCOMES : A **SCOPING REVIEW**

Angelina Stevany Regina Masengi^{1*}, Elvira Yunita²

Department of Pharmacology and Therapy, Faculty of Medicine, Universitas Sam Ratulangi, Manado, Indonesia¹, Department Biochemistry and Molecular Biology, Faculty of Medicine and Health Sciences, Universitas Bengkulu, Bengkulu, Indonesia² *Corresponding Author : asrmasengi@unsrat.ac.id

ABSTRAK

Aktivitas pekerjaan di lingkungan dataran tinggi membuat individu mengalami hipoksia hipobarik dan tekanan atmosfer rendah, yang menyebabkan risiko kesehatan yang unik. Memahami dampak fisiologis dari tenaga kerja di ketinggian sangat penting untuk keselamatan pekerja. Ulasan cakupan ini melihat sifat bervariasi dari penelitian hipoksia hipobarik, menyoroti pentingnya dalam memahami respons fisiologis terhadap keadaan hipoksia. Dari 2019 hingga 2024, ekstensi Item Pelaporan Pilihan untuk Tinjauan Sistematis dan Meta-Analisis untuk Tinjauan Pelingkupan (PRISMA-ScR) digunakan untuk melakukan pencarian literatur di PubMed, Perpustakaan Online Wiley, dan publikasi terpilih. Enam puluh lima makalah yang berpotensi relevan ditemukan, 24 di antaranya memenuhi kriteria inklusi. Investigasi yang disertakan, yang diterbitkan antara 2020 dan 2023, mencakup 15 penelitian pada hewan dan dua studi pada manusia. Hipoksia hipobarik intermiten memiliki efek perlindungan pada tingkat molekuler dan fungsional pada 88,24% penyelidikan, terutama dalam hal penurunan indikator stres oksidatif. Penelitian pada manusia telah menunjukkan pelatihan hipoksia intermiten meningkatkan kinerja atletik dan fungsi hemodinamik. Penelitian pada hewan menunjukkan perubahan dalam karakteristik genetik, histologis, dan fungsional di bawah situasi hipoksia hipobarik yang berbeda. Sementara hipoksia hipobarik intermiten tampaknya melindungi fungsi tubuh, efek pada fungsi kognitif tetap tidak diketahui.

Kata kunci : hasil, hipoksia hipobarik, intervensi

ABSTRACT

Occupational activities in high-altitude environments expose individuals to hypobaric hypoxia and low atmospheric pressure, leading to unique health risks. Understanding the physiological impacts of high-altitude labor is critical for worker safety. This scoping review looks at the varied nature of hypobaric hypoxia research, highlighting its importance in understanding physiological responses to hypoxic circumstances. From 2019 to 2024, the Preferred Reporting Items for Systematic Reviews and Meta-Analyses extension for Scoping Reviews (PRISMA-ScR) Checklist was used to conduct literature searches in PubMed, Wiley Online Library, and chosen publications. Sixty-five potentially relevant papers were discovered, 24 of which met inclusion criteria. The included investigations, which were published between 2020 and 2023, included 15 animal and two human studies. Intermittent hypotaric hypoxia had protective effects on molecular and functional levels in 88.24% of investigations, notably in terms of decreasing oxidative stress indicators. Human studies have shown intermittent hypoxia training improves athletic performance and hemodynamic function. Animal studies indicated alterations in genetic, histological, and functional characteristics under different hypobaric hypoxia situations. While intermittent hypobaric hypoxia appears to protect bodily functioning, the effects on cognitive function remain unknown.

Keywords : hypobaric hypoxia, interventions, outcomes

INTRODUCTION

Due to hypobaric hypoxia and falling air pressure, occupational tasks performed at high elevations carry inherent health risks. Various environmental elements present unique obstacles for those engaged in such activities, including mountaineers, miners, aviation or military personnel, and construction workers. Those who labor in these situations are particularly concerned about hypobaric hypoxia, characterized by lower oxygen levels at greater elevations.

While a certain amount of hypoxia could be advantageous for adaptation, excessive acute hypoxia can have negative repercussions that could jeopardize general health and physiological systems. People in occupations such as mining and mountaineering are especially vulnerable to these effects since extended exposure to hypobaric hypoxia can cause altitude sickness, cognitive impairment, and cardiovascular problems. Furthermore, the physical and psychological strain that high-altitude workers frequently endure exacerbates the challenges that hypoxic conditions present.

Understanding the complex interaction between hypobaric hypoxia and human physiology is essential to safeguarding the well-being of those working in high-altitude conditions. By examining the large amount of hypobaric hypoxia literature, this scoping review seeks to understand the various physiological reactions brought on by hypoxic settings. This work highlights the significance of increasing our understanding of hypobaric hypoxia through a thorough examination of the literature, providing insights that could guide the development of efficient methods to decrease associated health dangers in industrial settings.

METHODS

Our protocol was written using Preferred Reporting Items for Systematic Reviews and Meta-Analyses extension for Scoping Reviews (PRISMA-ScR) Checklist. The checklist was created by the EQUATOR (Enhancing the QUAlity and Transparency Of health Research) Network for the development of reporting guidelines in 2018 (1). The search for research articles to be reviewed in this study was done within one week, January 16th to 22nd, 2024, in Central Indonesian Time.

To be included in our review, a paper should be original research using primary data, not a review of intermittent hypobaric hypoxia. Peer-reviewed journal papers were included if they met the following criteria: available in free full texts from accessed database, published between 2019-2024, written in English, and involving human or animal subjects. To consider diverse aspects of quantifying those two types of treatment in the aforementioned population, qualitative, quantitative, and mixed methods studies meet our inclusion criteria. Papers were excluded if they did not fit within our conceptual framework of study, including people with specific diseases such as asthma.

From 2019 to 2024, the following bibliographic databases were searched for potentially relevant publications: PubMed and Wiley Online Library. The electronic database search was added by searching Antioxidants journal (https://www.mdpi.com/journal/antioxidants) and Acta Biochimica Indonesiana journal (https://pbbmi.org/newjurnal/index.php/actabioina) websites for other relevant publications. Keywords combined with some truncations and Boolean logic operators used in the PubMed and Wiley Online Library database queries for this review are "intermittent AND hypobaric AND hypoxia". Filters used in the database are Free full text for text availability, English for article language, and publication date from 2014/02 – 2024. For the central review, only publication from 2019 was included.

When duplication occurs, the one from the PubMed database search is used. The reviewer then evaluated the titles and abstracts, and then the entire text of all papers was discovered thrice to increase consistency.

As mentioned earlier, this scoping review aims to answer the following questions: How is research conducted on intermittent intervention of hypobaric hypoxia? By answering this question, the reviewer could clarify the definition of intermittent hypobaric hypoxia and its impacts in vivo. To address this question, the reviewer employed the following elements: population, intervention, comparator, outcomes, and study design (PICOS). Population: human or non-human mammals. Intervention: intermittent hypobaric hypoxia, as stated explicitly in the title or abstract. Comparator: normoxia and/or continuous hypobaric hypoxia. Outcomes: changes in body systems were observed quantitatively. Study design: primary study. A data-charting form was developed to determine which variables to extract and chart the data. Other than PICOS, the reviewer included authors, year of publication, aim(s) of study, and sample size in the data charting form.

Data synthesis was conducted in line with i) methodological features of included studies, and ii) interventions and outcomes. Finally, the reviewer combined and evaluated data from the included studies and concluded. The synthesis of results and conclusion were based on the research question mentioned above.

RESULTS

Selection of sources of evidence. The literature search yielded sixty-five potentially relevant publications. The reviewer then evaluated each publication based on the year of publication and study design. The evaluation was done thrice in Mendeley Library and each database or website. Twenty-four research articles were then obtained for further review and data extraction. The remaining publications were either unable to be retrieved, unavailable in free full text, did not use English, did not publish as a journal, or did not contain "intermittent" and "hypobaric" and "hypoxia" in the title and abstract. Figure 1 displays a flow diagram of the article selection process (7).

Characteristics of sources of evidence. All the investigations were published between 2020 and 2023 and included fifteen animal and two human studies. Mice or rats were used as experimental models in all animal studies in which the animals were subjected to hypobaric hypoxia conditions, either continuously or intermittently. Meanwhile, human subjects were subjected to hypobaric hypoxia on an intermittent basis. Table 1 summarizes the methodological features of all included studies. Table 2 highlights the treatments and results from the included studies.

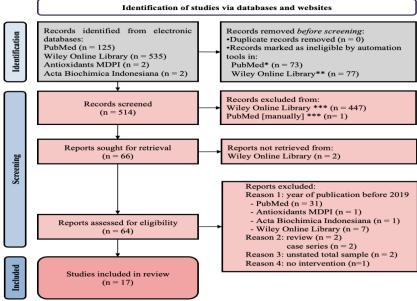


Figure 1. Flow Diagram of The Article Selection Process

Volume 5, Nomor 2, Juni 2024

ISSN : 2774-5848 (Online) ISSN : 2777-0524 (Cetak)

Table 1. Methodological Features of The Included Studies				
Author (publication year)	Population	Aims of study	Study design	
Dewi S et al. (2022) (8)	Wistar rats (6-8 weeks, male)	Investigated the effect of intermittent hypobaric hypoxia (IHH) on malondialdehyde and carbonyl levels of rat skeletal muscle as oxidative stress indicators.	Case control	
González-Candia et al. (2022) (9)	Wistar rats (8 weeks, male)	Described the responses of cardiac function toward IHH in rats as animal model.	Case control	
Santocildes et al. (2023) (10)	Sprague-Dawley rats (7 weeks, male)	Examined the impact of IHH and cold exposure, separately and concurrently, on rat muscle regeneration.	Case control	
Jung et al. (2020)(6)(11)	Human (moderately trained middle and long-distance runners) (adult 24-27 years, male)	Investigated the impact of intermittent interval training in hypobaric hypoxic conditions within six weeks on hemodynamic and autonomic nervous system function, and also on athletic performance.	Case control	
Ramos-Romero et al. (2020) (12)	Sprague-Dawley rats (adult with initial body weight 215 g, male)	Investigated how intermittent exposure to cold, hypobaric hypoxia (HH), and their combination affect gut microbiota and metabolites in vivo, as well as their impact on host physiology.	Case control	
Pena et al. (2020) (13)	Wistar rats (3 months, male)	Determined the oxidative level, NADPH oxidase expression, and MAPK activation in rats with right ventricular hypertrophy caused by CIHH.	Case control	
Liu et al. (2020) (14)	Sprague-Dawley rats (8 weeks, female)	Assessed the impact of IHH on rat female reproductive systems and investigate the underlying mechanisms at the histological, endocrine, and molecular levels.	Case control	
Terrizzi et al. (2021) (15)	Wistar rats (adult with body weight ranging 250-300g, male)	Examined how CIHH and continuous HH affects the hypothalamic-pituitary- gonadal axis regulation in male rats.	Case control	
Coimbra-Costa et al. (2021) (16)	Sprague-Dawley rats (adult weighing between	Investigated the impact of IHH on preventing brain	Case control	

Table 1. Methodological Features of The Included Studies

	230-250g, male)	damage from acute severe hypoxia.	
Shati et al. (2022) (17)	Sprague-Dawley rats (12 weeks, male)	Investigated whether intermittent short-duration re-oxygenation may protect the myocardium from hypoxia injury.	Case control
Choudhary et al. (2022) (18)	Balb/c mice (8-10 weeks, male)	Investigated the role of 12/15 LOX in HH-induced mitochondrial integrity disturbance and its correlation with neuronal apoptosis	Case control
Liu et al. (2022) (19)	Sprague-Dawley rats (8 weeks, male)	Investigated the healing mechanisms of CIHH on intervertebral disc degeneration disease in rats	Case control
Utrera et al. (2022) (20)	Wistar rats (adult, male)	Investigated the cycle- dependent biomechanical effects of IHH on the structure and function of the thoracic aorta artery.	Case control
Meyer et al. (2023) (21)	Human (over 50 years, male and female)	Investigated flight oxygenation relationship with ventricular (VE) and supraventricular ectopy (SVE)	Block- randomized crossover
Yaman et al. (2023) (22)	Sprague-Dawley rats (adult 245-312 g, male)	Investigated lung injury due to chronic long-term IHH (CLTIHH) in rat model and the impact of N-methyl-D- aspartate receptors by using receptor antagonist MK-801 (dizocilpine)	Case control
Luo et al. (2023) (23)	ApoE-/- mice on a C57BL/6 background (6-8 weeks 18-22 g, male)	Examined, preliminarily, how continuous HH affects atherosclerosis in high- altitude setting.	Case control
Zhang et al. (2023) (24)	Wistar rats (8 weeks, male)	Investigated the CIHH involvement in osteoporocis induced by spinal cord injury in rat model	Case control

Table 2.	Interventions a	and Outcomes
----------	-----------------	--------------

Inter ventio	iis and Outcomes			
Design	Population	Intervention	Comparator	Outcomes
Case control	25 Wistar rats (6-8	Exposed to an	normobaric	- The
	weeks, male),	altitude of	conditions	malondialdehy
	allocated [equally]	25,000 feet	(n=5)	de (MDA)
	into five groups (4	within 5		levels in:
	intervention	minutes using		o Group I
	groups, 1 control	hypobaric		was
	group)	chamber in		considera
	Design	Case control 25 Wistar rats (6-8 weeks, male), allocated [equally] into five groups (4 intervention groups, 1 control	DesignPopulationInterventionCase control25 Wistar rats (6-8Exposed to an altitude of allocated [equally]25,000into five groups (4within5 minutes using groups, 1 controlhypobaric	DesignPopulationInterventionComparatorCase control25 Wistar rats (6-8Exposed to an altitude of altitude of allocated [equally]normobaric

		once (group I), twice (II),		bly higher
		thrice (III), and		compared
		four (IV) times,		to
		with a 7-day		normobar
		interval		ic group
				(p= 0.008)
				o Group II,
				III, and IV were
				lower
				compared
				to group I
				- The carbonyl
				level in:
				• Group I
				was
				significan
				tly higher
				compared
				to
				normobar
				ic group
				(p=0.000)
				o Group II
				was
				higher
				than
				Group I
				compared
				to
				normobar
				ic group
				o Group III
				and IV
				was
				higher
				compared
				to
				normobar
				ic group,
				but lower
				compared
				to group I
				and II
González Case control	12 Wistar Kyoto	Exposed to one	Normobaric	- Echocardiogra
-Candia	rats	cycle which	normoxia	phy: by the 4 th
et al.	(8 weeks, male),	consists of one	(NN group),	cycle, there
(2022)	randomly divided	shift of HH	750 Torr, n=6	was a higher
(9)	into 2 equal	(428 Torr		ejection and a
	groups (1	equivalent to		shortening
	intervention	4600 of		fraction of the
	group, 1 control	altitude, 4		left ventricle
	group)	days) followed		function
	÷ 1/	by one shift of		- Histology of
		normoxia (750		the heart:
		Torr, 4 days).		Cardiac tissue
		Torr, 4 days). Intervention		
		Torr, 4 days). Intervention group, n=6		showed lower expression of

Volume 5, Nomor 2, Juni 2024

Santocild (es et al. (2023) (10)	Case control	Sprague-Dawley rats (7 weeks, male), randomly assigned to 5 groups (3 intervention groups, 2 control groups)	(IHH group) was exposed to 4 cycles. '''	Control (CTRL) group: passive recovery in normoxia at 23°C after surgically wounded in one gastrocnemiu s Additional control (CTRL_0): injured then after 24 h were assessed for the functional test	antioxidant proteinsMolecular biology assays of the heart (cardiac oxidative stress biomarkers, antioxidant enxymes, and NLRP 3 inflammasom e panel expression): IHH leads to lower levels of IL-1β, TNF-α, and oxidative stress markers than normobaric hypoxic controls.Muscle regeneration: Histological and functional evidence:0faste r (hist olog ical evid ence after 9 days , func tion al evid ence in
			g 4500m of geographi		CO LD and CO

level, or		0	Earli
over half			er
(55%) of			full
the sea			reco
level			very
oxygen			from
availabilit			injur
у.			у,
COHY			with
group:			in 9
exposed			days
to cold			-
and			, than
			than
hypobaric			CO
hypoxia			LD
(4500m)			and
intermitte			CO
ntly and			HY
simultane	-	Molecul	ar
ously		signalin	
ousiy		-	-
		0	- in
			the
			pSer
			473
			Akt/
			total
			Akt
			ratio
			after
			9
			days
			in
			CO
			LD,
			HY
			PO
			and
			CO
			HY
			à
			faste
			r
			rege
			nera
			tion
		-	
		0	
			the
			pThr
			172
			AM
			ΡΚα
			/tota
			1
			AM
			РКα
			ratio
			in
			the
			gastr
			ocne

					mius of HY PO à rege nera tion
Jung et al. (2020) (11)	Case control	20 athletes, moderately trained middle and long- distance runners (adult 24-27 years, male), divided into 2 groups	Hypoxic training group, HTG (n=10): residing at sea level but training in 526- mmHg hypobaric hypoxia with frequency of training was 90 min, 3 days per week, within 6 weeks	Normoxic training group, NTG (n=10): residing and training at sea level	 Body composition: no significant difference Athletic performance (e.g., maximal oxygen uptake): improved more significantly in HTG Hemodynamic function (e.g. oxygen uptake, and cardiac output) during submaximal exercise: improved more in HTG Autonomic nervous function (e.g., SD and root mean square of successive differences, high frequency, and low/high frequency): improved more in HTG Immune function: steady within the usual range before and after training in HTG and NTG
Ramos- Romero et al. (2020) (12)	Case control	52 Sprague- Dawley rats (adult with initial body weight 215 g, male), randomly divided into 4 groups	 Cold- exposed (COLD) group; exposed to 4 °C, 4 h/day within 21 days Hypobaric hypoxia (IHH) group; using hypobaric chamber 	Control (CTL) group	IHH:increasedhemoglobin, red andwhite cell counts andEnterobacteriales, andreduced body andadiposetissuesweightsandLactobacilliales.COHY:counteractedthehypoxia-inducedweight loss as well asthe increase in whiteblood cells, reducingtheBacteroidetes:Firmicutesratioand

		 with target pressure equivalent to 4,000 m of altitude achieved slowly over ~15 min, sustained for 4 h/day then gradually recovered to the normal barometric pressure over 15 min. This intermittent exposure was done for 21 days. Cold plus hypoxia (COHY) group 		normalizing the populations of Enterobacteriales and Lactobacilliales.
Pena et Case control al. (2020) (13)	20 Wistar rats (3 months, male), randomly divided into two experimental groups	CIH group: 2 days exposure to HH alternating with 2 days exposure to normobaric normoxia (NX) for 30 days	Normobaric normoxia (sea level control group) n=10	CIH group: developed right ventricular hypertrophy, upragulated lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1), Nox2, and p22phox, increased lipid peroxidation, stabilization of HIF1α, and activation of p38α.
Liu et al. Case control (2020) (14)	40 female Sprague-Dawley rats (8 weeks), randomly divided into two experimental groups	IHH: 20 rats were subjected to hypoxia at a simulated altitude of 5000 m in a hypobaric chamber for 8 hours (9:00 a.m17:00 p.m.) daily, for 2 weeks.	Control group (n=20) did not receive any treatment	The length of the diestrus phase increased considerably with IHH exposure. Following IHH exposure, estrogen levels increased while luteinizing hormone and progesterone levels declined. IHH-exposed rats also showed altered expression of ER, PR, and LHR. IHH exposure significantly reduced GSH-Px and T-SOD activity while increasing MDA

Volume 5, Nomor 2, Juni 2024

					content.
Terrizzi et al. (2021) (15)	Case control	30 adult male Wistar rats (weight ranging 250-300g), randomly divided into three experimental groups	Chronic intermittent hypoxia (CIH) involves exposure to discontinuous hypoxia (600 mbar, corresponding to 4,000 meters of simulated altitude) in a simulated high- altitude chamber for 18 hours per day, 5 days a week, within 30 days (approximately 50% of the total duration is hypoxia). Chronic Continuous Hypoxia (CCH) involves continuous exposure to the same ambient pressure in a simulated high- altitude chamber for 23.5 hours per day, seven days a week, within 30 days (nearly 100% of the experimental period is hypoxia condition)	Control group (C): normoxia	Male rats with hypoxia may have infertility due to overexpression of negative regulators of GnRH and luteinizing hormone production: - Intermittently treated rats showed increased levels of Rfrp3 (a negative regulator of GnRH and LH release) compared to controls. - Continuous hypoxia led to elevated levels of Kiss1 (a neuropeptide that increases GnRH release). - Intermittent hypoxia in rats resulted in decreased plasma luteinizing hormone and testosterone levels, as well as lower body weight compared to other groups.
Coimbra- Costa et al. (2021) (16)	Case control	44 adult male Sprague-Dawley rats (weighing between 230-250 g), randomly divided into four experimental groups	- Acute Severe Hypoxia (ASH) group: rats were subjected to normobaric hypoxia in constant flow chamber of 93% N2 and 7% O2 during 6-hour session, then decapitated immediately	NOR: normoxic group	ASH rats displayed astrocytes with phenotypic forms consistent with severe diffuse reactive astrogliosis, elevated oxidative stress indicators, and increased apoptotic proteins. Those three effects were decreased and prevented in rats preconditioned with IHH, coupled with

		after the		EPO upregulation and
		after the exposure (without any time for reoxygenation) - Intermittent Hypobaric Hypoxia (IHH) group: rats were subjected to HH for 8 days, with 4- hour periods per day. A hypobaric chamber was used to imitate an altitude of meters. - IHH + ASH group: rats were subjected to intermittent hypobaric hypoxia followed by a normobaric acute severe hypoxic session, then were decapitated soon after hypoxia to prevent reoxygenation.		EPO upregulation and NF-κB downregulation
Shati et Case control al. (2022) (17)	18 Sprague- Dawley male rats (12 weeks), randomly divided into three experimental groups	Hypoxia group: rats were subjected to a hypobaric chamber (405 mmHg) to simulate hypoxia at 5,000 m, for 14 days. Intermittent short-duration re-oxygenation: rats were subjected to a hypobaric chamber and then exposed to room air three times a day, for 14 days	Normoxia: exposed to room air as control	Hypoxia increased the oxidativestressbiomarkersmalondialdehydeand decreased antioxidant supreoxide dismutase. HypoxicheartsHypoxicheartsshowed higher levels of TNF- α and IL-6 in themyocardium. Histological results of hypoxic rats: cardiac myofibrilsmuscle fiber disorder, sarcoplasm vacuolation, nucleus pyknosis, and intercellular gaps enlargement. Intermittentshort- duration reoxygenation improves

histological, ultrastructural, and oxidant/antioxidant characteristics during hypoxia.

Choudha ry et al. (2022) (18)	Case control	Male Balb/c mice (8-10 weeks), randomly divided into four experimental groups	Hypoxia (H), corresponding to an altitude of 25,000 feet for 6 hours every day within 3 days; The ascension to the required height and fall to sea level were both at 700 feet per minute and the chamber temperature was kept constant at 26 $\pm 2 \circ C$. Hypoxia treated with Baicalein (HBA, 10 mg/ kg bw) intra- peritoneally for all three-day 30 min before induction of HH	Normoxia (N): did not get any treatments Normoxia treated with Baicalein (NBA, 10 mg/kg bw)	Treatment with baicalein (12/15 LOX inhibitor) dramatically decreased intra- hippocampal 12(S)HETE (12/15 LOX metabolite), which had previously increased due to hypoxia induction. Following HH, 12/15 LOX becomes embedded on the mitochondrial periphery, leading to mitochondrial integrity loss, increased cytochrome- c in the cytosol, and increased activity of Caspase-3, Caspase-9, and Bax/Bcl-2 expression ratios.
Liu et al. (2022) (19)	Case control	48 adult male Sprague-Dawley rats (8 weeks), randomly divided into three groups	Experimental group (CIHH- IDD; n=16): rats were treated with CIHH prior to receiving the same treatment	Control group (CON; n=16): did not undergo any therapies	- CIHH-IDD animals showed considerably decreased intervertebral disc height degradation

		as IDD rats. The CIHH treatment: for 28 days at a simulated altitude of 3,000 meters and 5 hours each day, the PO ₂ level was 108.8 mmHg (in low pressure oxygen chamber). Degenerative group (IDD; n=16): tail discs were punctured after 28 days of regular feeding.		$\begin{tabular}{lllllllllllllllllllllllllllllllllll$
Utrera et Case control al. (2022)	18 adults male Wistar rats, randomly divided	- Short-term intermittent hypobaric	Normobaric normoxia (n=6)	than those in IDD rats.
(20)	into three groups	hypotale hypoxia (STH; n=6) for four cycles, with normobaric pressure equals to 570 m.a.s.1 and changes of simulating altitude increases	(1-0)	 stretch while reducing circumferenti al residual strain of the aorta. During the early phases of IH (STH group), stiffening occurs, resulting in a significant

				(,
			of 150 m	rise in high
			per minute	strain elastic
			until 4600	modulus (E2)
			m.a.s.l.	and a rising
			Each cycle	trend in low
			consists of	strain elastic
			4 days of	modulus
			hypobaric	(E1). In
			hypoxia	contrast, the
			followed	LTH group
			by 4 days	had greater
			of	control-like
			normobaric	mechanical
			normoxia.	behavior.
			- Long-	- The STH
			term	group has
			intermitte	vascular
			nt	fibrosis,
			hypobaric	higher elastin
			hypoxia	levels, and
			(LTH;	more
			n=6) for	collagen
			10 cycles	fibers.
			After the	
			experimental	
			regimen, 6-	
			month-old	
			animals were	
			killed with an	
			anesthetic	
			overdose	
			(Sodium	
			Thiopentone	
			150 mg -kg-1	
			aorta artery	
			was removed	
			for	
			biomechanical,	
			functional, and	
			histological	
			testing.	
Manager	Dlasl	II	Energy	The communication of VT
Meyer et	Block-	Humans not	From	The occurrence of VE
al.	randomized	displaying any	December	did not vary by
(2023)	crossover	active health	2007 to June	condition, however
(21)		symptoms	2008, groups of	SVE was more
		(over 50 years,	participants	prevalent under flying
		male and female);	were observed	conditions (OR ratio =
		including	in a hypobaric	1.77, 95% CI: 1.21,
		individuals with	chamber (flight	2.59 for SVE
		stable heart	conditions	couples).
		problems	equal to 7000	During flying
		(moderate	feet altitude)	circumstances, rates of
		coronary artery	for 2 days, with	VE and SVE
		disease or	1 day of rest in	increased (RR ratio =
		congestive heart	between.	1.25, 95% CI: 1.03,
		failure diagnosed	The exposure	1.52 for VE couplets,
		according to New	condition was	RR ratio = $1.76, 95\%$
		York Heart	unknown to	CI: 1.39, 2.22 for SVE

	Association guidelines; n = 13), 14 smokers	participants, and the order of exposure		couplets). The frequency and severity of ectopy
	guidelines; n = 13), 14 smokers and 14 non- smokers without cardiac problems.	of exposure was randomly assigned to each group. On the first day in the chamber, 30 of 41 participants received the flying condition. A participant who received the control condition on the first day was unable to continue the trial due to a documented work conflict. Participants		The frequency and severity of ectopy increased with flight length.
		were allowed to act as they would on a flight, including sleeping, reading, watching movies, walking, and talking freely.		
		The investigator tracked participants' VE (ventricular ectopy) and SVE (supraventricul		
		ar ectopy) every 5 minutes during flying and control circumstances to assess their frequency and presence.		
Yaman et Case control al. (2023) (22)	32 male adult Sprague-Dawley rats (245-312 g), randomly divided into four groups	- Chronic long-term IHH (CLTIH H) group: rats were placed	Control group: normoxia condition	- The CLTIHH groups showed substantial increases in both oxidant and

into the		inflammatory
low-		indices, with
pressure		the exception
chamber,		of the group
stabilized		that received
at 430		MK-801.
mmHg	-	Histological
(equivale		examinations
nt to an		showed lung
altitude		injury and
of 4572		fibrotic
m.a.s.l)		alterations in
by an		the CLTIHH
adjustabl		group. MK-
e valve		801, an
and a dry		NMDAR
vacuum		antagonist,
pump,		effectively
which		reduces lung
conducte		damage and
d5ha		fibrosis.
day		
(09:00		
am to		
02:00		
pm)		
- CLTIHH		
+		
SALINE		
group:		
rats were		
placed in		
the same		
situation		
as the		
previous		
group		
and given		
saline		
injection		
<i>ip</i> daily		
(0.5 mL)		
to rule		
out		
possible		
effects of		
injection		
stress - CLTIHH		
+ MK-		
+ MK- 801		
group: rats were		
placed in		
the same		
circumsta		
nces as		
the		
CLTIHH		
group		

		and given		
		MK-801		
		(dizocilpi		
		ne, 0.3		
		mg/kg,		
		0.5 mL in		
		volume/		
		w saline		
		intraperit		
		oneally)		
		everyday.		
		The		
		injections		
		alternated		
		between		
		the left		
		and right		
		sides.		
		After		
		anesthetized		
		with sodium		
		pentobarbital		
		ip, rats were		
		euthanized by		
		cervical		
		dislocation		
		after the blood		
		collected by		
		cardiac		
		puncture.		
		puncture.		
Luo et al. Case control	ApoE-/- mice on a	Continuous	Control -	Four weeks
(2023)	C57BL/6	Continuous hypobaric	group:	of CHH
	C57BL/6 background	Continuous hypobaric hypoxia (CHH)	group: normoxia	of CHH exposure led
(2023)	C57BL/6 background (6-8 weeks 18-22	Continuous hypobaric hypoxia (CHH) group : spent 4	group:	of CHH exposure led to increased
(2023)	C57BL/6 background (6-8 weeks 18-22 g, male), randomly	Continuous hypobaric hypoxia (CHH) group : spent 4 weeks in a	group: normoxia	of CHH exposure led to increased atheroscleroti
(2023)	C57BL/6 background (6-8 weeks 18-22	Continuous hypobaric hypoxia (CHH) group : spent 4 weeks in a hypobaric	group: normoxia	of CHH exposure led to increased atheroscleroti c lesions and
(2023)	C57BL/6 background (6-8 weeks 18-22 g, male), randomly	Continuous hypobaric hypoxia (CHH) group : spent 4 weeks in a	group: normoxia	of CHH exposure led to increased atheroscleroti
(2023)	C57BL/6 background (6-8 weeks 18-22 g, male), randomly divided into two	Continuous hypobaric hypoxia (CHH) group : spent 4 weeks in a hypobaric room with 10%	group: normoxia	of CHH exposure led to increased atheroscleroti c lesions and impaired
(2023)	C57BL/6 background (6-8 weeks 18-22 g, male), randomly divided into two	Continuous hypobaric hypoxia (CHH) group : spent 4 weeks in a hypobaric room with 10% oxygen and	group: normoxia	of CHH exposure led to increased atheroscleroti c lesions and impaired plaque
(2023)	C57BL/6 background (6-8 weeks 18-22 g, male), randomly divided into two	Continuous hypobaric hypoxia (CHH) group : spent 4 weeks in a hypobaric room with 10% oxygen and 364 mmHg air	group: normoxia	of CHH exposure led to increased atheroscleroti c lesions and impaired plaque stability
(2023)	C57BL/6 background (6-8 weeks 18-22 g, male), randomly divided into two	Continuous hypobaric hypoxia (CHH) group : spent 4 weeks in a hypobaric room with 10% oxygen and 364 mmHg air pressure,	group: normoxia	of CHH exposure led to increased atheroscleroti c lesions and impaired plaque stability (p=0.0017).
(2023)	C57BL/6 background (6-8 weeks 18-22 g, male), randomly divided into two	Continuous hypobaric hypoxia (CHH) group : spent 4 weeks in a hypobaric room with 10% oxygen and 364 mmHg air pressure, equivalent to	group: normoxia	of CHH exposure led to increased atheroscleroti c lesions and impaired plaque stability (p=0.0017). In the CHH
(2023)	C57BL/6 background (6-8 weeks 18-22 g, male), randomly divided into two	Continuous hypobaric hypoxia (CHH) group : spent 4 weeks in a hypobaric room with 10% oxygen and 364 mmHg air pressure,	group: normoxia	of CHH exposure led to increased atheroscleroti c lesions and impaired plaque stability (p=0.0017). In the CHH group, plaque
(2023)	C57BL/6 background (6-8 weeks 18-22 g, male), randomly divided into two	Continuous hypobaric hypoxia (CHH) group : spent 4 weeks in a hypobaric room with 10% oxygen and 364 mmHg air pressure, equivalent to	group: normoxia	of CHH exposure led to increased atheroscleroti c lesions and impaired plaque stability (p=0.0017). In the CHH group, plaque smooth
(2023)	C57BL/6 background (6-8 weeks 18-22 g, male), randomly divided into two	Continuous hypobaric hypoxia (CHH) group : spent 4 weeks in a hypobaric room with 10% oxygen and 364 mmHg air pressure, equivalent to	group: normoxia	of CHH exposure led to increased atheroscleroti c lesions and impaired plaque stability (p=0.0017). In the CHH group, plaque smooth muscle cells
(2023)	C57BL/6 background (6-8 weeks 18-22 g, male), randomly divided into two	Continuous hypobaric hypoxia (CHH) group : spent 4 weeks in a hypobaric room with 10% oxygen and 364 mmHg air pressure, equivalent to	group: normoxia	of CHH exposure led to increased atheroscleroti c lesions and impaired plaque stability (p=0.0017). In the CHH group, plaque smooth muscle cells and collagen
(2023)	C57BL/6 background (6-8 weeks 18-22 g, male), randomly divided into two	Continuous hypobaric hypoxia (CHH) group : spent 4 weeks in a hypobaric room with 10% oxygen and 364 mmHg air pressure, equivalent to	group: normoxia	of CHH exposure led to increased atheroscleroti c lesions and impaired plaque stability (p=0.0017). In the CHH group, plaque smooth muscle cells and collagen levels
(2023)	C57BL/6 background (6-8 weeks 18-22 g, male), randomly divided into two	Continuous hypobaric hypoxia (CHH) group : spent 4 weeks in a hypobaric room with 10% oxygen and 364 mmHg air pressure, equivalent to	group: normoxia	of CHH exposure led to increased atheroscleroti c lesions and impaired plaque stability (p=0.0017). In the CHH group, plaque smooth muscle cells and collagen levels reduced, but
(2023)	C57BL/6 background (6-8 weeks 18-22 g, male), randomly divided into two	Continuous hypobaric hypoxia (CHH) group : spent 4 weeks in a hypobaric room with 10% oxygen and 364 mmHg air pressure, equivalent to	group: normoxia	of CHH exposure led to increased atheroscleroti c lesions and impaired plaque stability (p=0.0017). In the CHH group, plaque smooth muscle cells and collagen levels reduced, but plaque
(2023)	C57BL/6 background (6-8 weeks 18-22 g, male), randomly divided into two	Continuous hypobaric hypoxia (CHH) group : spent 4 weeks in a hypobaric room with 10% oxygen and 364 mmHg air pressure, equivalent to	group: normoxia	of CHH exposure led to increased atheroscleroti c lesions and impaired plaque stability (p=0.0017). In the CHH group, plaque smooth muscle cells and collagen levels reduced, but plaque macrophages
(2023)	C57BL/6 background (6-8 weeks 18-22 g, male), randomly divided into two	Continuous hypobaric hypoxia (CHH) group : spent 4 weeks in a hypobaric room with 10% oxygen and 364 mmHg air pressure, equivalent to	group: normoxia	of CHH exposure led to increased atheroscleroti c lesions and impaired plaque stability (p=0.0017). In the CHH group, plaque smooth muscle cells and collagen levels reduced, but plaque macrophages and lipid
(2023)	C57BL/6 background (6-8 weeks 18-22 g, male), randomly divided into two	Continuous hypobaric hypoxia (CHH) group : spent 4 weeks in a hypobaric room with 10% oxygen and 364 mmHg air pressure, equivalent to	group: normoxia	of CHH exposure led to increased atheroscleroti c lesions and impaired plaque stability (p=0.0017). In the CHH group, plaque smooth muscle cells and collagen levels reduced, but plaque macrophages
(2023)	C57BL/6 background (6-8 weeks 18-22 g, male), randomly divided into two	Continuous hypobaric hypoxia (CHH) group : spent 4 weeks in a hypobaric room with 10% oxygen and 364 mmHg air pressure, equivalent to	group: normoxia	of CHH exposure led to increased atheroscleroti c lesions and impaired plaque stability (p=0.0017). In the CHH group, plaque smooth muscle cells and collagen levels reduced, but plaque macrophages and lipid
(2023)	C57BL/6 background (6-8 weeks 18-22 g, male), randomly divided into two	Continuous hypobaric hypoxia (CHH) group : spent 4 weeks in a hypobaric room with 10% oxygen and 364 mmHg air pressure, equivalent to	group: normoxia	of CHH exposure led to increased atheroscleroti c lesions and impaired plaque stability (p=0.0017). In the CHH group, plaque smooth muscle cells and collagen levels reduced, but plaque macrophages and lipid levels rose dramatically
(2023)	C57BL/6 background (6-8 weeks 18-22 g, male), randomly divided into two	Continuous hypobaric hypoxia (CHH) group : spent 4 weeks in a hypobaric room with 10% oxygen and 364 mmHg air pressure, equivalent to	group: normoxia	of CHH exposure led to increased atheroscleroti c lesions and impaired plaque stability (p=0.0017). In the CHH group, plaque smooth muscle cells and collagen levels reduced, but plaque macrophages and lipid levels rose dramatically (p<0.001).
(2023)	C57BL/6 background (6-8 weeks 18-22 g, male), randomly divided into two	Continuous hypobaric hypoxia (CHH) group : spent 4 weeks in a hypobaric room with 10% oxygen and 364 mmHg air pressure, equivalent to	group: normoxia	of CHH exposure led to increased atheroscleroti c lesions and impaired plaque stability ($p=0.0017$). In the CHH group, plaque smooth muscle cells and collagen levels reduced, but plaque macrophages and lipid levels rose dramatically ($p<0.001$). The CHH
(2023)	C57BL/6 background (6-8 weeks 18-22 g, male), randomly divided into two	Continuous hypobaric hypoxia (CHH) group : spent 4 weeks in a hypobaric room with 10% oxygen and 364 mmHg air pressure, equivalent to	group: normoxia	of CHH exposure led to increased atheroscleroti c lesions and impaired plaque stability ($p=0.0017$). In the CHH group, plaque smooth muscle cells and collagen levels reduced, but plaque macrophages and lipid levels rose dramatically ($p<0.001$). The CHH group had
(2023)	C57BL/6 background (6-8 weeks 18-22 g, male), randomly divided into two	Continuous hypobaric hypoxia (CHH) group : spent 4 weeks in a hypobaric room with 10% oxygen and 364 mmHg air pressure, equivalent to	group: normoxia	of CHH exposure led to increased atheroscleroti c lesions and impaired plaque stability ($p=0.0017$). In the CHH group, plaque smooth muscle cells and collagen levels reduced, but plaque macrophages and lipid levels rose dramatically ($p<0.001$). The CHH group had increased
(2023)	C57BL/6 background (6-8 weeks 18-22 g, male), randomly divided into two	Continuous hypobaric hypoxia (CHH) group : spent 4 weeks in a hypobaric room with 10% oxygen and 364 mmHg air pressure, equivalent to	group: normoxia	of CHH exposure led to increased atheroscleroti c lesions and impaired plaque stability (p=0.0017). In the CHH group, plaque smooth muscle cells and collagen levels reduced, but plaque macrophages and lipid levels rose dramatically (p<0.001). The CHH group had increased levels of
(2023)	C57BL/6 background (6-8 weeks 18-22 g, male), randomly divided into two	Continuous hypobaric hypoxia (CHH) group : spent 4 weeks in a hypobaric room with 10% oxygen and 364 mmHg air pressure, equivalent to	group: normoxia	of CHH exposure led to increased atheroscleroti c lesions and impaired plaque stability ($p=0.0017$). In the CHH group, plaque smooth muscle cells and collagen levels reduced, but plaque macrophages and lipid levels rose dramatically ($p<0.001$). The CHH group had increased

						and endomucin (p=0.0196) in their plaques, which corresponded with angiogenesis development.
Zhang et al. (2023) (24)	Case control	Wistar rats (8 weeks, male), randomly divided into four groups	Wistar rats' T9- T10 spinal cords were transectioned to create a model of SCI. After SCI, those rats received CIHH therapy (6 hours per day, PB = 404 mmHg, Po2 = 84 mmHg) for 7 weeks: 1) Spinal cord injury group (SCI), 2) SCI plus CIHH group (SCI + CIHH).	Sham operated group CIHH treatment group	and	X-ray and micro-CT scans showed lower bone mineral density (BMD), bone volume to tissue volume, volumetric BMD, trabecular thickness, number, and connectivity in SCI+CIHH group compared to sham rats. CIHH therapy substantially restored the increased trabecular bone pattern factor, trabecular separation, and structural model index in the distal femur and proximal tibia of SCI rats. Histomorpho metry revealed that CIHH therapy improved bone formation in SCI rats by increasing osteoid production

1

	and
	decreasing
	the number
	and surface
	of TRAP-
	positive
	osteoclasts.
_	In SCI rats,
	osteoblastoge
	nesis-related
	biomarkers
	(e.g.,
	procollagen
	type 1 N-
	terminal
	propeptide,
	osteocalcin in
	serum, ALP
	and OPG
	mRNAs in
	bone tissue)
	decreased
	while
	osteoclastoge
	nesis-related
	biomarkers
	(e.g.,
	scleorostin in
	serum,
	RANKL and
	TRAP
	mRNAs in
	bone tissue)
	increased,
	according to
	ELISA and
	real-time
	PCR results.
	The
	deviations of
	the
	aforemention
	ed
	biomarkers
	have been
	improved by
	СІНН
	treatment.
-	CIHH's
	protective
	effects may
	be partly
	mediated via
	the HIF-1a
	signaling
	pathway.
	- •

Findings from Human Studies

Hypoxia training dramatically increased athletic performance, including maximum oxygen absorption. During submaximal exercise, athletes trained in hypoxia conditions showed better hemodynamic function (e.g., oxygen uptake, pulse, and cardiac output) and autonomic nervous system function. The study included a 5-day pre-test phase (3 testing days + 1 rest day), a 6-week training period for each environmental condition, and a 5-day posttest. The post-test period began three days following the final training session. The hypoxic state was tested intermittently in a chamber with an oxygen pressure of 526 mmHg, approximating an altitude of 3000 meters (11). One of the studies employed a simulated altitude of 4,000 meters for 1 h/day, 5 days a week, within 6 weeks (16). Meanwhile, in the non-athlete population, one study included in this review found that the frequency and severity of ectopy (supraventricular ectopy) increased with flight time(21).

Findings from Non-Human Studies

Most investigations used a case-control approach. Almost all studies included male rats or mice. The animal models ranged from Wistar and Sprague-Dawley rats to Balb-c mice. With simulating altitudes ranging from 3000 to 7620 m.a.s.l., the studies found changes in molecular (for example, oxidative stress), histological, and functional parameters, also pathological evidence. Some studies compare intermittent and continuous hypobaric hypoxia interventions. The intersession of intermittent hypobaric hypoxia intervention ranges from hours (6 hours) to days (7 days)(8–10,12–20,22–24).

Synthesis of Results

The scoping analysis identified 17 relevant articles on hypobaric hypoxia published between 2020 and 2023. We organized research by behavior type and described their populations, aims of study, study designs, interventions, comparator, and overall results. We identified original articles and tallied the number of papers possibly fulfilling our inclusion criteria. Most of the research (88.24%) uses hypobaric hypoxia, which was given intermittently to investigate its impact on molecular and functional levels. From those 17 studies, it can be concluded that intermittent hypobaric hypoxia appears to safeguard numerous body functions. Furthermore, 8 out of 17 articles investigated the effects of hypobaric hypoxia on molecular parameters in oxidative stress.

DISCUSSION

Individuals working in high-altitude locations face particular obstacles and risks to their health. Mountaineers, miners, aviation or military personnel, and construction workers are among the jobs that expose people to hypobaric hypoxia and low atmospheric pressure. Therefore, understanding the impacts of high-altitude occupation is critical for protecting the health and well-being of workers in these settings. Conversely, a tolerated hypoxic situation at a particular time range promotes the protective effect. This scoping review's findings emphasize the multidimensional character of hypobaric hypoxia research. The importance of research focusing on physiological aspects emphasizes the necessity of understanding responses to hypoxic circumstances (1,2,4,5,25).

Working at high elevations, typically classified as elevations exceeding 2,500 meters, will impact the worker's health and general well-being. The key concern is hypoxia. Organ function begins to decline when oxygen transport is substantially disrupted. This condition can result in acute mountain sickness and cerebral edema. High-altitude cerebral edema (HACE) is frequently associated with fatigue, ataxia, and impaired mental state (2). This condition is a serious consequence of hypoxia and can be fatal if not treated immediately.

Meanwhile, headache, dizziness, nausea, and exhaustion are common acute mountain sickness symptoms that appear within the first 6–12 hours post-exposure. This consequence can be prevented with oral treatment and does not typically require prompt descent or oxygen supplementation (3).

Moreover, in a study included in this review, the frequency and severity of ectopy increased with flight length, which equals hypoxia duration (21). On the other hand, another study found intermittent hypobaric hypoxia increases athletic performance and hemodynamic and autonomic nervous, including immunological function (11). We may infer, from included and related studies, that moderate and intermittent hypobaric hypoxia is more protective than severe acute hypoxia (5,11,21,26,27).

If performance alterations are noticed due to hypoxia or intermittent hypobaric hypoxia, underlying molecular changes must have occurred (1,4,5,28,29). Compared to the group that received acute hypobaric hypoxia, rats treated with intermittent hypobaric hypoxia showed a reduction in oxidative stress indicators, notably malondialdehyde (MDA) levels (8). Another study also shows that intermittent hypobaric hypoxia leads to lower levels of IL-1 β , TNF α , and oxidative stress indicators than normobaric hypoxic controls (9). IL-1 β and TNF α are pro-inflammatory cytokines; the first regulates immunological and inflammatory responses, while the latter promotes systemic inflammation. Based on the two investigations and numerous other research included in this scoping review, it can be concluded that intermittent hypobaric hypoxia exposure induces a protective molecular response, notably in terms of oxidative stress (8–10,13–19,24). Another study also shows the effect of intermittent hypobaric hypoxia on oxidative stress status and antioxidant enzyme activity (30,31). Yet, our scoping review does have certain limitations. The effects of hypobaric hypoxia, particularly intermittent exposure, on cognitive function were not adequately addressed in the research assessed utilizing the applicable techniquen.

CONCLUSION

To the authors' knowledge, no previous research has described hypobaric hypoxia in a scoping review. Intermittent hypobaric hypoxia has protective impacts on human and animal subjects that may be quantified both molecularly and performance-wise. Overall, this scoping review emphasizes the need for more study to unravel the processes underlying hypobaric hypoxia's molecular, physiological, and cognitive impacts and to investigate novel therapies to minimize its negative repercussions. Future studies should also strive to overcome geographical gaps in study coverage and take into account the many groups that may be impacted by hypobaric hypoxia, such as people living at high elevations and those exposed to hypoxic circumstances in the workplace.

ACKNOWLEDGMENT

The researcher would like to express his gratitude for the support, inspiration and assistance to all parties in helping the researcher complete this research.

REFERENCES

Ambroży T, Maciejczyk M, Klimek AT, Wiecha S, Stanula A, Snopkowski P, et al. The effects of intermittent hypoxic training on anaerobic and aerobic power in boxers. Int J Environ Res Public Health. 2020 Dec 2;17(24):1–11.

Available from: https://www.frontiersin.org/articles/10.3389/fendo.2023.1035186/full

- Bhutta BS, Faysal ;, Ilya A;, Affiliations B. Hypoxia [Internet]. 2024. Available from: https://www.ncbi.nlm.nih.gov/books/NBK482316/?report=printable
- Chen X, Zhang J, Lin Y, Li Y, Wang H, Wang Z, et al. Mechanism, prevention and treatment of cognitive impairment caused by high altitude exposure. Vol. 14, Frontiers in Physiology. Frontiers Media SA; 2023.
- Choudhary R, Kumar M, Katyal A. 12/15–Lipoxygenase debilitates mitochondrial health in intermittent hypobaric hypoxia induced neuronal damage: An in vivo study. Redox Biol [Internet]. 2022 Feb 1 [cited 2024 Jan 17];49. Available from: /pmc/articles/PMC8728585/
- Coimbra-Costa D, Garzón F, Alva N, Pinto TCC, Aguado F, Torrella JR, et al. Intermittent Hypobaric Hypoxic Preconditioning Provides Neuroprotection by Increasing Antioxidant Activity, Erythropoietin Expression and Preventing Apoptosis and Astrogliosis in the Brain of Adult Rats Exposed to Acute Severe Hypoxia. International Journal of Molecular Sciences 2021, Vol 22, Page 5272 [Internet]. 2021 May 17 [cited 2024 Jan 17];22(10):5272. Available from: https://www.mdpi.com/1422-0067/22/10/5272/htm
- Coppel J, Hennis P, Gilbert-Kawai E, Grocott MPW. The physiological effects of hypobaric hypoxia versus normobaric hypoxia: A systematic review of crossover trials. Vol. 4, Extreme Physiology and Medicine. BioMed Central Ltd.; 2015.
- Dewi S, Mulyawan W, Wanandi SI, Sadikin M. The effect of intermittent hypobaric hypoxia on oxidative stress status and antioxidant enzymes activity in rat brain. Acta Biochimica Indonesiana [Internet]. 2018 Dec 31 [cited 2024 Jan 20];1(2):46–51. Available from: https://pbbmi.org/newjurnal/index.php/actabioina/article/view/30
- Dewi S, Satyadharma AR, Danendra AR, Wardaya. Malondialdehyde and carbonyl levels in skeletal muscle tissues after intermittent hypobaric hypoxia exposures. Acta Biochimica Indonesiana [Internet]. 2022 Nov 18 [cited 2024 Jan 20];5(2):113–113. Available from: https://pbbmi.org/newjurnal/index.php/actabioina/article/view/113
- Farhan RFS, Masengi ASR, Herawati M, Wardaya, Ibrahim N, Purba J, et al. PSD 95 and NMDAR alteration as plasticity responses after intermittent hypobaric hypoxia induction in Sprague-Dawley rats. Adv Sci Lett. 2017;23(7).
- González-Candia A, Candia AA, Paz A, Mobarec F, Urbina-Varela R, Del Campo A, et al. Cardioprotective Antioxidant and Anti-Inflammatory Mechanisms Induced by Intermittent Hypobaric Hypoxia. Antioxidants [Internet]. 2022 Jun 1 [cited 2024 Jan 17];11(6):1043. Available from: https://www.mdpi.com/2076-3921/11/6/1043/htm
- Herawati M, Wardaya, Mulyawan W, Farhan FS, Ferdinal F, Jusman SWA, et al. Expression of Hypoxia-Inducible Factor-1α and Myoglobin in Rat Heart as Adaptive Response to Intermittent Hypobaric Hypoxia Exposure. Hayati. 2017 Jul 1;24(3):131–5.
- Jung WS, Kim SW, Park HY. Interval hypoxic training enhances athletic performance and does not adversely affect immune function in middle-and long-distance runners. Int J Environ Res Public Health. 2020 Mar 2;17(6).
- Liu SR, Ren D, Wu HT, Yao SQ, Song ZH, Geng LD, et al. Reparative effects of chronic intermittent hypobaric hypoxia pre-treatment on intervertebral disc degeneration in rats. Mol Med Rep [Internet]. 2022 May 1 [cited 2024 Jan 17];25(5). Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8971903/
- Liu W, Pu L, Deng B, Xu H, Wang Z, Wang T, et al. Intermittent hypobaric hypoxia causes deleterious effects on the reproductive system in female rats. Biomedicine & Pharmacotherapy. 2020 Oct 1;130:110511.
- Luo S, Ma X, Wu W, Lin S, Li M, Zhang Z, et al. Continuous Hypobaric Hypoxia may Promote Atherosclerosis Progression in Apolipoprotein E-deficient Mice. Int J Med Sci

[Internet]. 2023 [cited 2024 Jan 17];20(7):849. Available from: /pmc/articles/PMC10266041/

- Meyer MJ, Mordukhovich I, Coull BA, McCracken J, Wellenius GA, Mittleman MA, et al. Impact of simulated flight conditions on supraventricular and ventricular ectopy. Sci Rep. 2023 Dec 1;13(1).
- Millet GP, Faiss R, Pialoux V. Point: Hypobaric hypoxia induces/does not induce different responses from normobaric hypoxia. Vol. 112, Journal of Applied Physiology. 2012. p. 1783–4.
- Nov 1 [cited 2024 Jan 17];15(11). Available from: /pmc/articles/PMC7608931/
- Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. The BMJ [Internet]. 2021 Mar 29 [cited 2024 Jan 23];372. Available from: /pmc/articles/PMC8005924/
- Pena E, Brito J, El Alam S, Siques P. Oxidative Stress, Kinase Activity and Inflammatory Implications in Right Ventricular Hypertrophy and Heart Failure under Hypobaric Hypoxia. Int J Mol Sci [Internet]. 2020 Sep 1 [cited 2024 Jan 17];21(17):1–17. Available from: /pmc/articles/PMC7503689/
- Pena E, Siques P, Brito J, Arribas SM, Böger R, Hannemann J, et al. Nox2 Upregulation and p38α MAPK Activation in Right Ventricular Hypertrophy of Rats Exposed to Long-Term Chronic Intermittent Hypobaric Hypoxia. Int J Mol Sci [Internet]. 2020 Nov 2 [cited 2024 Jan 17];21(22):1–14. Available from: /pmc/articles/PMC7698046/
- Prince TS, Thurman J, Affiliations KH. Acute Mountain Sickness Continuing Education Activity [Internet]. 2024. Available from: https://www.ncbi.nlm.nih.gov/books/NBK430716/?report=printable
- Ramos-Romero S, Santocildes G, Piñol-Piñol D, Rosés C, Pagés T, Hereu M, et al. Implication of gut microbiota in the physiology of rats intermittently exposed to cold and hypobaric hypoxia. PLoS One [Internet]. 2020 Rosales AM, Shute RJ, Hailes WS, Collins CW, Ruby BC, Slivka DR. Independent effects of acute normobaric hypoxia and hypobaric hypoxia on human physiology. Sci Rep. 2022 Dec 1;12(1).
- Santocildes G, Viscor G, Pagès T, Torrella JR. Simulated altitude is medicine: intermittent exposure to hypobaric hypoxia and cold accelerates injured skeletal muscle recovery. J Physiol [Internet]. 2023 Dec 28 [cited 2024 Jan 17]; Available from: https://eresources.perpusnas.go.id:2161/doi/full/10.1113/JP285398
- Seo S, Kim SW, Seo J, Sun Y, Choi JH, Lee H, et al. Effects of interval and sprint training under hypobaric hypoxia on aerobic, anaerobic, and time trial performance in elite Korean national male mountain bike cyclists—a pilot study. J Mens Health. 2024 Mar 1;20(3):130–8.
- Shati AA, Zaki MSA, Alqahtani YA, Haidara MA, Alshehri MA, Dawood AF, et al. Intermittent Short-Duration Re-oxygenation Attenuates Cardiac Changes in Response to Hypoxia: Histological, Ultrastructural and Oxidant/Antioxidant Parameters. Br J Biomed Sci [Internet]. 2022 Mar 18 [cited 2024 Jan 17];79. Available from: /pmc/articles/PMC9302540/
- Terrizzi AR, Martinez MP, Fernandez-Solari J. Altered production of reproductive neuropeptides in rats subjected to chronic intermittent hypoxia. J Integr Neurosci [Internet]. 2021 Sep 30 [cited 2024 Jan 18];20(3):651–7. Available from: https://www.imrpress.com/journal/JIN/20/3/10.31083/j.jin2003069/htm
- Tricco AC, Lillie E, Zarin W, O'Brien KK, Colquhoun H, Levac D, et al. PRISMA extension for scoping reviews (PRISMA-ScR): Checklist and explanation. Vol. 169, Annals of Internal Medicine. American College of Physicians; 2018. p. 467–73.

- Utrera A, Navarrete Á, González-Candia A, García-Herrera C, Herrera EA. Biomechanical and structural responses of the aorta to intermittent hypobaric hypoxia in a rat model. Sci Rep [Internet]. 2022 Dec 1 [cited 2024 Jan 17];12(1):3790. Available from: /pmc/articles/PMC8904842/
- Yaman MO, Sönmez OF, Ekiz-Yilmaz T, Sönmez D, Meydanlı EEG, Guner I, et al. The role of NMDA glutamate receptors in lung injury caused by chronic long-term intermittent hypobaric hypoxia. Brazilian Journal of Medical and Biological Research [Internet]. 2023 [cited 2024 Jan 17];56. Available from: /pmc/articles/PMC10041672/
- Zhang L, Yin Y, Guo J, Jin L, Hou Z. Chronic intermittent hypobaric hypoxia ameliorates osteoporosis after spinal cord injury through balancing osteoblast and osteoclast activities in rats. Front Endocrinol (Lausanne) [Internet]. 2023 May 9 [cited 2024 Jan 17];14:1035186.