Sentiment Analysis of Twitter User’s Opinions on Government’s Performance in dealing with COVID-19 in Indonesia
DOI:
https://doi.org/10.31004/jpdk.v4i6.8128Abstract
Saat ini, cukup banyak masyarakat Indonesia yang menggunakan Twitter, sebuah jejaring sosial media yang menyediakan informasi berupa produk, iklan, dan promosi mengenai kritik, saran suatu isu, dan opini publik. Penelitian ini bertujuan untuk menyederhanakan dan meningkatkan pendeteksian suatu opini tanpa menggunakan metode yang memakan waktu, seperti kuesioner. Selain itu, ia membuat kumpulan data berdasarkan tweet pengguna berbahasa Indonesia. Label data dikumpulkan menggunakan metode k-fold cross-validation yang dibagi menjadi 10 bagian. Metode klarifikasi analisis sentimen dilakukan melalui studi banding antara tiga metode, yaitu Naive Bayes (NB), Support Vector Machine (SVM), dan Long Short-Term Memory (LSTM). Ketiga metode memberikan hasil yang sesuai untuk setiap sifat kepribadian tetapi SVM sedikit mengungguli yang lain.Downloads
Published
2022-11-01
How to Cite
Sujiwo, B. ., & Wibowo, A. . (2022). Sentiment Analysis of Twitter User’s Opinions on Government’s Performance in dealing with COVID-19 in Indonesia. Jurnal Pendidikan Dan Konseling (JPDK), 4(6), 145–153. https://doi.org/10.31004/jpdk.v4i6.8128
Issue
Section
Articles
License
Copyright (c) 2022 Bagus Sujiwo, Antoni Wibowo
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution-ShareAlike 4.0 International License that allows others to share the work with an acknowledgement of the works authorship and initial publication in this journal. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journals published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).