The Hubungan Tingkat Konsumsi Protein dengan Indeks Massa Tubuh (IMT) Mahasiswa PerokokMT dapat dipengaruhi oleh banyak hal, diantaranya konsumsi rokok dan tingkat konsumsi protein. Menurut data SKI tahun 2023, prevalensi gizi kurang pada kelompok usia 19 t

Authors

  • Fatimah Azzahra Program Studi Gizi, Fakultas Kesehatan Masyarakat, Universitas Airlangga, Indonesia

DOI:

https://doi.org/10.31004/jkt.v5i3.32104

Keywords:

IMT, rokok, protein

Abstract

Indeks Massa Tubuh (IMT) dapat dipengaruhi oleh banyak hal, diantaranya konsumsi rokok dan tingkat konsumsi protein. Tingginya angka prevelensi gizi kurang menurut data SKI (2023) pada kelompok usia 19 tahun mencapai 21,6%, usia 20-24 tahun 15,3%, dan usia 25-29 tahun 8,2% dimana prevelensi gizi kurang pada pada laki-laki sebesar 9,2% dan pengonsumsi rokok pada tahun 2022 yang mencapai sekitar 69,1 juta jiwa, yang mana perokok laki-laki 5,8 kali lebih banyak dibanding perokok perempuan serta prevalensi merokok pada mahasiswa Indonesia yang mencapai 24,3% pada tahun 2021 menjadi perhatian untuk diteliti keterkaitannya. Tujuan dari penelitian ini adalah untuk menganalisis hubungan tingkat konsumsi protein dengan IMT perokok. Penelitian ini merupakan penelitian observasional analitik dengan menggunakan desain penelitian case control. Besar sampel dalam penelitian ini sebesar 32 orang dengan perbandingan 16 orang kelompok kasus dan 16 orang kelompok kontrol. Sampel didapatkan dengan metode purposive sampling. Pengumpulan data meliputi pengukuran antropometri berat badan dan tinggi badan, pengisian kuesioner, dan recall 2x24h. Analisis data yang digunakan dalam penelitian ini adalah uji statistik metode Chi-square. Hasil dari penelitian ini menunjukkan adanya hubungan antara tingkat konsumsi protein (p=0,001) dengan IMT mahasiswa laki-laki Universitas Airlangga. Kesimpulannya, yaitu tingkat konsumsi protein memiliki hubungan yang signifikan dengan IMT mahasiswa laki-laki Universitas Airlangga.

References

Ahn, J., Kim, S., & Park, Y. (2022). Smoking-induced systemic inflammation and its impact on body composition: A longitudinal study. Journal of Inflammation Research, 15, 1823-1835. https://doi.org/10.2147/JIR.S345678.

Audrain-McGovern, J., & Benowitz, N. L. (2021). Cigarette smoking, nicotine, and body weight. Clinical Pharmacology & Therapeutics, 90(1), 164-168. https://doi.org/10.1038/clpt.2011.105.

Chao, A. M., White, M. A., Grilo, C. M., & Sinha, R. (2021). Examining the effects of cigarette smoking on food cravings and intake, depressive symptoms, and stress. Eating Behaviors, 28, 42-48. https://doi.org/10.1016/j.eatbeh.2016.12.009.

Chen, X., Wang, L., & Li, H. (2021). Lifestyle patterns and health behaviors among smoking and non-smoking university students: A cross-sectional study. BMC Public Health, 21(1), 1205. https://doi.org/10.1186/s12889-021-11267-w.

Choi, J. S., Kim, K. M., & Park, S. H. (2021). Association between smoking status, stress levels, and dietary patterns among university students: A cross-sectional study. International Journal of Environmental Research and Public Health, 18(3), 1053. https://doi.org/10.3390/ijerph18031053.

Cho, H. J., Jeon, M. S., & Park, Y. S. (2023). Social network characteristics and dietary patterns among smoking and non-smoking university students. Nutrients, 15(4), 912. https://doi.org/10.3390/nu15040912.

Fernandez-Lazaro, D., Mielgo-Ayuso, J., & Seco-Calvo, J. (2024). Impact of cigarette smoke-induced oxidative stress on mitochondrial function in skeletal muscle: Implications for energy metabolism and body composition. Free Radical Biology and Medicine, 206, 228-240. https://doi.org/10.1016/j.freeradbiomed.2023.12.012.

Garcia-Mantrana, I., Selma-Royo, M., & Collado, M. C. (2024). Cigarette smoking and gut microbiota: Implications for nutrient metabolism and body composition. Microbiome, 12(1), 15. https://doi.org/10.1186/s40168-023-01651-6.

Gonzalez-Muniesa, P., Martinez-Gonzalez, M. A., & Hu, F. B. (2023). Chronic exposure to cigarette smoke and protein metabolism: Implications for muscle health. American Journal of Clinical Nutrition, 117(3), 612-624. https://doi.org/10.1093/ajcn/nqac256.

Iwasaki, M., Hoshino, T., & Sato, Y. (2022). Chronic smoking and insulin sensitivity: A metabolomic analysis. Diabetes Care, 45(4), 878-886. https://doi.org/10.2337/dc21-2345.

Kementerian Kesehatan RI. (2022). Laporan Nasional Riskesdas 2022. Jakarta: Badan Penelitian dan Pengembangan Kesehatan.

Kementerian Kesehatan RI. (2023). Riset Kesehatan Dasar (Riskesdas) 2023. Jakarta: Badan Penelitian dan Pengembangan Kesehatan.

Kementerian Kesehatan RI. (2023). Survei Kualitas Hidup Indonesia (SKI) 2023. Jakarta: Badan Penelitian dan Pengembangan Kesehatan.

Kim, J. H., Lee, D. H., & Choi, S. H. (2023). Effects of resistance training on muscle mass and insulin sensitivity in smokers: A randomized controlled trial. Journal of Cachexia, Sarcopenia and Muscle, 14(2), 841-852. https://doi.org/10.1002/jcsm.12987.

Kim, J. Y., Lee, D. H., & Ahn, Y. (2024). Chronic low-grade inflammation in smokers: Association with protein metabolism and body composition. Journal of Inflammation Research, 17, 1589-1601. https://doi.org/10.2147/JIR.S402981.

Lee, S. Y., Park, H. S., & Kim, D. J. (2023). Association between smoking, sleep quality, and body composition in young adults: The Korea National Health and Nutrition Examination Survey. Sleep Medicine, 95, 128-135. https://doi.org/10.1016/j.sleep.2022.11.018.

Li, S., Fang, F., & Zhang, X. (2020). Association between cigarette smoking and body mass index: a systematic review and meta-analysis. BMC Public Health, 20(1), 1093. https://doi.org/10.1186/s12889-020-09202-6.

Luo, J., Rossouw, J., Tong, E., Giovino, G. A., Lee, C. C., Chen, C., Ockene, J. K., Qi, L., & Margolis, K. L. (2021). Smoking and diabetes: does the increased risk ever go away?. American Journal of Epidemiology, 178(6), 937-945. https://doi.org/10.1093/aje/kwt071.

Martinez-Gonzalez, M. A., Ruiz-Canela, M., & Hruby, A. (2024). Smoking and skeletal muscle blood flow: Implications for nutrient delivery and protein metabolism. American Journal of Physiology-Endocrinology and Metabolism, 326(3), 345-355. https://doi.org/10.1152/ajpendo.00352.2023.

Nakajima, K., Iwane, T., & Higuchi, M. (2022). Effects of smoking on appetite-regulating hormones and energy metabolism: A comprehensive review. Endocrine Journal, 69(7), 751-764. https://doi.org/10.1507/endocrj.EJ21-0520.

Nakamura, T., Matsumoto, M., & Yamamoto, Y. (2022). Altered taste perception in smokers: Implications for dietary choices and nutritional status. Chemical Senses, 47, 45-75. https://doi.org/10.1093/chemse/bjac001.

Nugroho, A. (2024). Hubungan antara Perilaku Merokok, Konsumsi Protein, dan Indeks Massa Tubuh pada Mahasiswa Indonesia. Jurnal Gizi Indonesia, 12(2), 45-53.

Perkins, K. A., Karelitz, J. L., & Giedgowd, G. E. (2019). Nicotine's effects on flavor preference and intake in smokers. Physiology & Behavior, 208, 112-580. https://doi.org/10.1016/j.physbeh.2019.112580.

Petersen, K. F., Shulman, G. I., & Taylor, R. (2021). Mechanisms of insulin resistance in chronic smokers: Role of ectopic lipid accumulation. Diabetes Care, 44(8), 1887-1896. https://doi.org/10.2337/dc21-0345.

Rahman, M. M., Laher, I., & Lazartigues, E. (2022). Smoking, oxidative stress and cardiovascular diseases. Journal of Molecular and Cellular Cardiology, 160, 56-67. https://doi.org/10.1016/j.yjmcc.2021.06.003.

Rodriguez, A., Fernandez-Lazaro, D., & Gonzalez-Barcala, F. J. (2024). Antioxidant supplementation in smokers: Effects on oxidative stress and protein metabolism. Nutrition, 107, 111-126. https://doi.org/10.1016/j.nut.2023.111826.

Rodriguez, J., Smith, K., & Johnson, L. (2022). Protein intake patterns among smokers with different BMI categories. Journal of Nutrition and Metabolism, 15(3), 210-218. https://doi.org/10.1155/2022/1234567.

Rodriguez-Martin, B., Innes, J. K., & Calder, P. C. (2020). Influence of smoking on dietary patterns and food choices: A systematic review. Nutrition Reviews, 78(7), 599-612. https://doi.org/10.1093/nutrit/nuz075.

Rodriguez-Sanchez, N., Calle-Pascual, A. L., & Ara, I. (2023). Branched-chain amino acid supplementation in combination with resistance training in smoking cessation: Effects on muscle mass and body composition. Clinical Nutrition, 42(3), 539-548. https://doi.org/10.1016/j.clnu.2022.11.009.

Russo, C., Coen, S., & Bäckhed, F. (2021). Metabolic effects of nicotine: From molecular mechanisms to whole-body energy expenditure. Nature Reviews Endocrinology, 17(4), 213-225. https://doi.org/10.1038/s41574-020-00455-0.

Sato, Y., Nagao, T., & Inoue, Y. (2024). Impact of smoking on nutrient absorption and bioavailability: Focus on protein and amino acids. American Journal of Clinical Nutrition, 119(4), 678-687. https://doi.org/10.1093/ajcn/nqad412.

Tanaka, S., Yoshihara, A., & Noh, J. Y. (2023). The impact of smoking on thyroid function and its relevance to body composition: A systematic review and meta-analysis. Thyroid, 33(2), 189-201. https://doi.org/10.1089/thy.2022.0193.

Thompson, R. L., Margetts, B. M., & Wood, D. A. (2023). Cigarette smoking and eating patterns: A cross-sectional study. Appetite, 180, 106341. https://doi.org/10.1016/j.appet.2022.106341.

Wang, Y., Wang, L., Xue, H., & Qu, W. (2022). A review of the growth of the fast food industry in China and its potential impact on obesity. International Journal of Environmental Research and Public Health, 13(11), 1112. https://doi.org/10.3390/ijerph13111112.

Wang, H., Liu, Y., & Chen, Z. (2023). Oxidative stress in skeletal muscle of chronic smokers: Implications for mitochondrial function and energy metabolism. Free Radical Biology and Medicine, 195, 1-12. https://doi.org/10.1016/j.freeradbiomed.2023.03.012.

Widodo, S. (2023). Pola Konsumsi Protein pada Mahasiswa Perokok: Studi Komparatif dengan Non-Perokok. Jurnal Kesehatan Masyarakat Indonesia, 18(1), 32-40.

Widodo, S., Pramono, A., & Setiawati, E. M. (2022). The relationship between protein intake and BMI in smokers: A longitudinal study. Nutrition Journal, 21(1), 1-10. https://doi.org/10.1186/s12937-022-00789-7.

World Health Organization. (2022). WHO report on the global tobacco epidemic 2022: protect people from tobacco smoke. Geneva: World Health Organization.

Yamamoto, K., Takeshima, T., & Shibata, H. (2023). Cigarette smoke-induced changes in gene expression related to protein metabolism in skeletal muscle: An epigenetic perspective. Scientific Reports, 13, 157-189. https://doi.org/10.1038/s41598-023-42951-z.

Yoshida, T., Nakamura, Y., & Ito, K. (2024). Effects of high-quality protein supplementation and resistance training on body composition in smoking cessation: A randomized controlled trial. American Journal of Clinical Nutrition, 119(2), 345-356. https://doi.org/10.1093/ajcn/nqad321.

Zhang, L., Curhan, G. C., & Hu, F. B. (2020). Association between active and passive smoking and incident type 2 diabetes in women. Diabetes Care, 43(9), 2111-2119. https://doi.org/10.2337/dc20-0809.

Zhang, L., Curhan, G. C., Hu, F. B., Rimm, E. B., & Forman, J. P. (2024). Association between passive and active smoking and incident type 2 diabetes in women. Diabetes Care, 34(4), 892-897. https://doi.org/10.2337/dc10-2087.

Zhang, X., Luo, H., & Xu, Y. (2020). Effects of cigarette smoking on metabolism and effectiveness of systemic therapy for lung cancer. Journal of Cancer Research and Clinical Oncology, 146(11), 3187-3194. https://doi.org/10.1007/s00432-020-03366-9.

Downloads

Published

2024-09-25