KONTAMINASI PARTIKEL MICROGLASS DALAM PENGGUNAAN OBAT INJEKSI TERHADAP KESELAMATAN PASIEN : LITERATURE REVIEW
DOI:
https://doi.org/10.31004/jkt.v5i2.28905Keywords:
Keselamatan pasien, Kontaminasi partikel microglass, Obat injeksiAbstract
Kontaminasi partikel dalam obat injeksi merupakan masalah kritis yang dapat mempengaruhi keselamatan dan kesehatan pasien. Salah satu jenis kontaminan yang menjadi perhatian utama adalah partikel microglass. Partikel microglass dapat berasal dari berbagai sumber selama proses pembuatan, pengemasan atau distribusi obat injeksi. Kontaminan tersebut dapat berasal dari berbagai sumber selama proses pembuatan, pengemasan, atau distribusi obat injeksi, menyebabkan berbagai komplikasi kesehatan, dari reaksi lokal hingga efek sistemik yang serius. Metode pada penelitian ini menggunakan pendekatan literature review untuk meninjau publikasi ilmiah terkait kontaminasi partikel microglass dalam obat injeksi. Rentang waktu penelitian adalah 3 bulan, kriteria inklusi artikel dari tahun 2014 hingga 2024 yang membahas efek kontaminasi partikel microglass pada obat injeksi dalam bahasa Inggris atau bahasa Indonesia. Hasil pada penelitian menunjukkan bahwa langkah-langkah seperti pemecahan ampul yang tepat, penggunaan filter needle, dan pengalaman klinis mempengaruhi tingkat kontaminasi partikel kaca. Meskipun beberapa metode telah terbukti efektif, diperlukan penelitian lebih lanjut untuk memperkuat temuan tersebut dan meningkatkan keselamatan pasien secara menyeluruh. Kesimpulan pada penelitian ini yaitu menyoroti pentingnya implementasi praktik klinis yang aman dan efektif dalam mengurangi risiko kontaminasi partikel microglass dalam obat injeksi. Dengan mempertimbangkan berbagai aspek seperti metode pemecahan ampul yang tepat, pemanfaatan teknologi deteksi dan filtrasi yang efektif, serta penggunaan alat pelindung yang sesuai, praktik klinis dapat secara signifikan meningkatkan keselamatan pasien dan kualitas layanan kesehatan secara menyeluruh.References
Carlton, R. A. (2015). Analysis of Glass Vial Interior Surfaces in Parenteral Drug Stability Studies. Microscopy and Microanalysis, 21(S3), 191–192. https://doi.org/10.1017/S1431927615001750
Chiannilkulchai, N., & Kejkornkaew, S. (2021). Safety concerns with glass particle contamination: improving the standard guidelines for preparing medication injections. International Journal for Quality in Health Care, 33(2). https://doi.org/10.1093/intqhc/mzab091
Erkoc Hut, A., & Yazici, Z. A. (2021). Glass particle contamination threat in nursing practice: A pilot study. Journal of Advanced Nursing, 77(7), 3189–3191. https://doi.org/10.1111/jan.14847
Gaitan Gomez, O. L., Aristizabal, P., & Bueno Robles, L. S. (2020). Práctica de inyecciones seguras por parte del personal de la salud: revisión integrativa. Investigación En Enfermería: Imagen y Desarrollo, 22. https://doi.org/10.11144/Javeriana.ie22.pisp
Houzé, P., Borowski, I., Bito, E., Megarbane, B., & Labat, L. (2022). Micro sampling, a new trend in toxicological screening? Toxicologie Analytique et Clinique, 34(3), S50–S51. https://doi.org/10.1016/j.toxac.2022.06.059
Joo, G. E., Sohng, K.-Y., & Park, M. Y. (2016). The effect of different methods of intravenous injection on glass particle contamination from ampules. SpringerPlus, 5(1), 15. https://doi.org/10.1186/s40064-015-1632-0
Kawakami, Y., & Tagami, T. (2021). Pumping infusions with a syringe may cause contamination of the fluid in the syringe. Scientific Reports, 11(1), 15421. https://doi.org/10.1038/s41598-021-94740-1
Kim J, D. J. O. (2023). Medication Routes of Administration. Treasure Island (FL): StatPearls Publishing. https://www.ncbi.nlm.nih.gov/books/NBK568677/
Kuhn, D., Joseph, L., Philip, R., & Mcintosh, Robert, A. (2019). Systems and methods for glass particle detection.
Kumari, S., Agarwal, S., & Khan, S. (2022). Micro/nano glass pollution as an emerging pollutant in near future. Journal of Hazardous Materials Advances, 6, 100063. https://doi.org/10.1016/j.hazadv.2022.100063
Lee, J.-O. (2017). Effects of a Finger Guard while Opening the Glass Ampoule by Nursing Students. https://api.semanticscholar.org/CorpusID:217290939
Lee, K.-R., Chae, Y.-J., Cho, S.-E., & Chung, S.-J. (2011). A strategy for reducing particulate contamination on opening glass ampoules and development of evaluation methods for its application. Drug Development and Industrial Pharmacy, 37, 1394–1401. https://api.semanticscholar.org/CorpusID:3328914
Painchart, L., Odou, P., & Bussières, J.-F. (2017). [Particulate contamination associated with the manipulation of drugs in glass ampules: A literature review]. Annales Pharmaceutiques Francaises, 76 1, 3–15. https://api.semanticscholar.org/CorpusID:196836771
Patel, P., P. Patel, R., Brandon, S., McLean, S., Bruno, R., & de Graaff, B. (2012). Effects of Filtration on the Presence of Particulate and Oxycodone Content of Injections Prepared from Crushed OxyContin® Tablets. Current Drug Safety, 7(3), 218–224. https://doi.org/10.2174/157488612803251298
Perez, M., Décaudin, B., Abou Chahla, W., Nelken, B., Storme, L., Masse, M., Barthélémy, C., Lebuffe, G., & Odou, P. (2018). Effectiveness of in-Line Filters to Completely Remove Particulate Contamination During a Pediatric Multidrug Infusion Protocol. Scientific Reports, 8(1), 7714. https://doi.org/10.1038/s41598-018-25602-6
Rainer, T., Jens, S., Jonas, H., & Manfred, D. (2014). Method and device for detecting particles in glass.
Schaut, R. A., Hoff, K. C., Demartino, S. E., Denson, W. K., & Verkleeren, R. L. (2017). Enhancing Patient Safety through the Use of a Pharmaceutical Glass Designed To Prevent Cracked Containers. PDA Journal of Pharmaceutical Science and Technology, 71(6), 511–528. https://doi.org/10.5731/pdajpst.2017.007807
Schumacher, E. F., Talesky, H. M., & Diebold, K. J. (2017). Characterization of Glass Delamination by TEM: Results from a New Sample Preparation Technique. Microscopy Today, 25(1), 36–41. https://doi.org/10.1017/S1551929516001127
Unahalekhaka, A., & Nuthong, P. (2023). Glass particulate adulterated in single dose ampoules: A patient safety concern. Journal of Clinical Nursing, 32(7–8), 1135–1139. https://doi.org/10.1111/jocn.16336
Zarour-Shalev, E. H., Ovadia, Y., Tuchmay, O., Reynolds, G., & Lev, N. (2015). Filtration of Glass Delamination Particles with West Pharmaceutical Vial Adapters. PDA Journal of Pharmaceutical Science and Technology, 69(6), 669–676. https://doi.org/10.5731/pdajpst.2015.01076
Downloads
Published
Issue
Section
License
Copyright (c) 2024 Irvan Maulana, Arik Juliana Putra Kmg, Laely Wahyunita Septianingrum, Luh Ari Suantari, Ni Putu Nita Ayu Sandra, Deni Fami Prasetya
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work’s authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal’s published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).