PENGARUH USIA DAN JENIS KELAMIN TERHADAP KADAR IGG DAN KEJADIAN COVID-19 PASCAVAKSINASI PADA TENAGAESEHATAN KOTA BENGKULU
DOI:
https://doi.org/10.31004/jkt.v5i1.24902Keywords:
vaksin, IgG, usia, jenis kelamin, kejadian COVID-19 pascavaksinasiAbstract
Variabilitas respons antibodi terhadap vaksinasi COVID-19 dipengaruhi oleh faktor-faktor seperti usia dan jenis kelamin. Penelitian ini bertujuan untuk mengkaji dampak usia dan jenis kelamin terhadap kadar IgG serta kejadian COVID-19 pascavaksinasi. Dengan memperoleh pemahaman mendalam tentang hubungan ini, diharapkan dapat ditingkatkan strategi vaksinasi yang lebih efektif dan efisien bagi berbagai kelompok populasi. Penelitian ini adalah penelitian cross-sectional yang dilakukan selama periode Juli hingga Desember 2021, melibatkan partisipasi 60 tenaga kesehatan dari Rumah Sakit Harapan dan Doa (RSHD) di Kota Bengkulu. Data primer dikumpulkan dari responden ini dalam rangka mengidentifikasi hubungan antara usia, jenis kelamin, dan respons antibodi terhadap vaksinasi COVID-19. Pengambilan data kadar antibodi IgG dilakukan dengan teknik CMIA, sementara data usia, jenis kelamin, dan kejadian COVID-19 pascavaksinasi melalui kuesioner. Metode statistik yang diterapkan dalam penelitian ini mencakup serangkaian uji, seperti uji Kruskal-Wallis, uji Mann-Whitney, dan uji Chi-Square. Temuan penelitian menegaskan bahwa kelompok usia 40-55 tahun dan perempuan memiliki kadar IgG yang lebih tinggi, sedangkan proporsi kejadian COVID-19 pascavaksinasi lebih tinggi pada kelompok usia 20-29 tahun dan laki-laki. Hal ini menunjukkan pengaruh signifikan dari usia dan jenis kelamin terhadap respons antibodi dan kejadian COVID-19 pascavaksinasi. Kesimpulan ini memberikan wawasan penting bagi strategi vaksinasi yang lebih efektif dan cermat bagi berbagai kelompok populasi.References
Alishaq, M., Nafady-Hego, H., Jeremijenko, A., Al Ajmi, J. A., Elgendy, M., Vinoy, S., Fareh, S. B., Veronica Plaatjies, J., Nooh, M., Alanzi, N., Kaleeckal, A. H., Latif, A. N., Coyle, P., Elgendy, H., Abou-Samra, A.-B., & Butt, A. A. (2021). Risk factors for breakthrough SARS-CoV-2 infection in vaccinated healthcare workers. PLOS ONE, 16(10), e0258820. https://doi.org/10.1371/journal.pone.0258820
Antonelli, M., Penfold, R. S., Merino, J., Sudre, C. H., Molteni, E., Berry, S., Canas, L. S., Graham, M. S., Klaser, K., Modat, M., Murray, B., Kerfoot, E., Chen, L., Deng, J., Österdahl, M. F., Cheetham, N. J., Drew, D. A., Nguyen, L. H., Pujol, J. C., … Steves, C. J. (2022). Risk factors and disease profile of post-vaccination SARS-CoV-2 infection in UK users of the COVID Symptom Study app: a prospective, community-based, nested, case-control study. The Lancet Infectious Diseases, 22(1), 43–55. https://doi.org/10.1016/S1473-3099(21)00460-6
Arora, G., Taneja, J., Bhardwaj, P., Goyal, S., Naidu, K., Yadav, Sunita. K., Saluja, D., & Jetly, S. (2022). Adverse events and breakthrough infections associated with COVID?19 vaccination in the Indian population. Journal of Medical Virology, 94(7), 3147–3154. https://doi.org/10.1002/jmv.27708
Beyerstedt, S., Casaro, E. B., & Rangel, É. B. (2021). COVID-19: angiotensin-converting enzyme 2 (ACE2) expression and tissue susceptibility to SARS-CoV-2 infection. European Journal of Clinical Microbiology & Infectious Diseases, 40(5), 905–919. https://doi.org/10.1007/s10096-020-04138-6
Biber, J., Ranes, B., Lawrence, S., Malpani, V., Trinh, T. T., Cyders, A., English, S., Staub, C. L., McCausland, K. L., Kosinski, M., Baranwal, N., Berg, D., & Pop, R. (2022). Mental health impact on healthcare workers due to the COVID-19 pandemic: a U.S. cross-sectional survey study. Journal of Patient-Reported Outcomes, 6(1), 63. https://doi.org/10.1186/s41687-022-00467-6
Binay, U., Karakeçili, F., Binali, E., Barkay, O., Gül, Ö., & Merto?lu, C. (2021). Level of SARS-CoV-2 IgG antibodies after two doses CoronaVac vaccine: Primarily report. https://doi.org/10.21203/rs.3.rs-388073/v1
Bukowska, A., Spiller, L., Wolke, C., Lendeckel, U., Weinert, S., Hoffmann, J., Bornfleth, P., Kutschka, I., Gardemann, A., Isermann, B., & Goette, A. (2017). Protective regulation of the ACE2/ACE gene expression by estrogen in human atrial tissue from elderly men. Experimental Biology and Medicine, 242(14), 1412–1423. https://doi.org/10.1177/1535370217718808
Ceban, F., Nogo, D., Carvalho, I. P., Lee, Y., Nasri, F., Xiong, J., Lui, L. M. W., Subramaniapillai, M., Gill, H., Liu, R. N., Joseph, P., Teopiz, K. M., Cao, B., Mansur, R. B., Lin, K., Rosenblat, J. D., Ho, R. C., & McIntyre, R. S. (2021). Association Between Mood Disorders and Risk of COVID-19 Infection, Hospitalization, and Death. JAMA Psychiatry, 78(10), 1079. https://doi.org/10.1001/jamapsychiatry.2021.1818
Cucunawangsih, C., Wijaya, R. S., Lugito, N. P. H., & Suriapranata, I. (2022). Antibody response after a third dose mRNA-1273 vaccine among vaccinated healthcare workers with two doses of inactivated SARS-CoV-2 vaccine. International Journal of Infectious Diseases, 118, 116–118. https://doi.org/10.1016/j.ijid.2022.02.036
Demonbreun, A. R., Sancilio, A., Velez, M. E., Ryan, D. T., Pesce, L., Saber, R., Vaught, L. A., Reiser, N. L., Hsieh, R. R., D’Aquila, R. T., Mustanski, B., McDade, T. W., & McNally, E. M. (2021). COVID-19 mRNA Vaccination Generates Greater Immunoglobulin G Levels in Women Compared to Men. The Journal of Infectious Diseases, 224(5), 793–797. https://doi.org/10.1093/infdis/jiab314
Fink, A. L., & Klein, S. L. (2018). The evolution of greater humoral immunity in females than males: implications for vaccine efficacy. Current Opinion in Physiology, 6, 16–20. https://doi.org/10.1016/j.cophys.2018.03.010
Fisman, D. N., Lee, N., & Tuite, A. R. (2022). Timing of Breakthrough Infection Risk After Vaccination Against SARS-CoV-2 1 2. MedRxiv. https://doi.org/10.1101/2022.01.04.22268773
Flanagan, K. L., Fink, A. L., Plebanski, M., & Klein, S. L. (2017). Sex and Gender Differences in the Outcomes of Vaccination over the Life Course. Annual Review of Cell and Developmental Biology, 33(1), 577–599. https://doi.org/10.1146/annurev-cellbio-100616-060718
Gagliardi, M. C., Tieri, P., Ortona, E., & Ruggieri, A. (2020). ACE2 expression and sex disparity in COVID-19. Cell Death Discovery, 6(1), 37. https://doi.org/10.1038/s41420-020-0276-1
Gebhard, C., Regitz-Zagrosek, V., Neuhauser, H. K., Morgan, R., & Klein, S. L. (2020). Impact of sex and gender on COVID-19 outcomes in Europe. Biology of Sex Differences, 11(1), 29. https://doi.org/10.1186/s13293-020-00304-9
Giefing-Kröll, C., Berger, P., Lepperdinger, G., & Grubeck-Loebenstein, B. (2015). How sex and age affect immune responses, susceptibility to infections, and response to vaccination. Aging Cell, 14(3), 309–321. https://doi.org/10.1111/acel.12326
Goyal, M., Jain, M., Patel, N., & Sharma, A. (2022). Quantitative estimation of anti-spike SARS-CoV-2 IgG antibody response after covishield vaccination in healthcare workers. Journal of Indian Academy of Oral Medicine and Radiology, 34(2), 176. https://doi.org/10.4103/jiaomr.jiaomr_338_21
Hidayat, R., Mustika, A. P., Avisha, F., Djuliannisaa, Z., Winari, D. D., Putri, R. A., Lisman, H. M., Davin, V., Fathi, G. C., Widhani, A., Aini, M. H., Yudhistira, Y., Azizah, S., Rahmadani, M., Istanti, N. D., & Giantini, A. (2022). Evaluation of SARS-CoV-2 Antibody Response Post Third Dose COVID-19 mRNA Vaccination at Universitas Indonesia Hospital. Acta Medica Academica, 51(2), 69–78. https://doi.org/10.5644/ama2006-124.374
Jalkanen, P., Kolehmainen, P., Häkkinen, H. K., Huttunen, M., Tähtinen, P. A., Lundberg, R., Maljanen, S., Reinholm, A., Tauriainen, S., Pakkanen, S. H., Levonen, I., Nousiainen, A., Miller, T., Välimaa, H., Ivaska, L., Pasternack, A., Naves, R., Ritvos, O., Österlund, P., … Julkunen, I. (2021). COVID-19 mRNA vaccine induced antibody responses against three SARS-CoV-2 variants. Nature Communications, 12(1), 3991. https://doi.org/10.1038/s41467-021-24285-4
Kaur, U., Bala, S., Ojha, B., Pathak, B. K., Joshi, A., Yadav, A. K., Singh, A., Kansal, S., & Chakrabarti, S. S. (2022). Determinants of COVID-19 Breakthrough Infections and Severity in ChAdOx1 nCoV-19–Vaccinated Priority Groups. The American Journal of Tropical Medicine and Hygiene, 107(4), 850–855. https://doi.org/10.4269/ajtmh.22-0172
KILINÇ, Ç., YA?AR DUMAN, M., ÇALI?IR, B., ÇÖPLÜ, N., ÖZBEK, R., DEM?R, C., ERGÜL, Z., & TÜFEKC?, E. F. (2022). Evaluation of anti-spike IgG response after inactivated COVID-19 vaccine in healthcare workers. Kastamonu Medical Journal, 2(4), 123–126. https://doi.org/10.51271/kmj-0085
McCartney, P. R. (2020). Sex-Based Vaccine Response in the Context of COVID-19. Journal of Obstetric, Gynecologic & Neonatal Nursing, 49(5), 405–408. https://doi.org/10.1016/j.jogn.2020.08.001
Müller, L., Andrée, M., Moskorz, W., Drexler, I., Walotka, L., Grothmann, R., Ptok, J., Hillebrandt, J., Ritchie, A., Rabl, D., Ostermann, P. N., Robitzsch, R., Hauka, S., Walker, A., Menne, C., Grutza, R., Timm, J., Adams, O., & Schaal, H. (2021). Age-dependent Immune Response to the Biontech/Pfizer BNT162b2 Coronavirus Disease 2019 Vaccination. Clinical Infectious Diseases, 73(11), 2065–2072. https://doi.org/10.1093/cid/ciab381
Puteri, A. E., Yuliarti, E., Putri, N., Fauzia, A. A., Wicaksono, Y. S., & Tresiana, N. (2022). DI INDONESIA Analysis of the Implementation of the Covid-19 Vaccination Policy in Indonesia (Vol. 19).
Scully, E. P., Haverfield, J., Ursin, R. L., Tannenbaum, C., & Klein, S. L. (2020). Considering how biological sex impacts immune responses and COVID-19 outcomes. Nature Reviews Immunology, 20(7), 442–447. https://doi.org/10.1038/s41577-020-0348-8
Sharma, A., Oda, G., & Holodniy, M. (2021). COVID-19 Vaccine Breakthrough Infections in Veterans Health Administration. MedRxiv.
Tretyn, A., Szczepanek, J., Skorupa, M., Jarkiewicz-Tretyn, J., Sandomierz, D., Dejewska, J., Ciechanowska, K., Jarkiewicz-Tretyn, A., Koper, W., & Pa?gan, K. (2021). Differences in the Concentration of Anti-SARS-CoV-2 IgG Antibodies Post-COVID-19 Recovery or Post-Vaccination. Cells, 10(8), 1952. https://doi.org/10.3390/cells10081952
Uysal, E. B., Gümü?, S., Bektöre, B., Bozkurt, H., & Gözalan, A. (2022). Evaluation of antibody response after COVID-19 vaccination of healthcare workers. Journal of Medical Virology, 94(3), 1060–1066. https://doi.org/10.1002/jmv.27420
WHO. (n.d.). WHO Coronavirus (COVID-19) Dashboard. Retrieved May 23, 2023, from https://covid19.who.int/
Zhang, R., Li, Y., Zhang, A. L., Wang, Y., & Molina, M. J. (n.d.). Identifying airborne transmission as the dominant route for the spread of COVID-19. https://doi.org/10.1073/pnas.2009637117/-/DCSupplemental
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Putri Syifa Nabilah, Utari Hartati Suryani, Nikki Aldi Massardi, Debie Rizqoh, Riry Ambarsarie
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work’s authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal’s published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).