PENGARUH USIA DAN JENIS KELAMIN TERHADAP KADAR IGG DAN KEJADIAN COVID-19 PASCAVAKSINASI PADA TENAGAESEHATAN KOTA BENGKULU

Authors

  • Putri Syifa Nabilah Program Studi Kedokteran Fakultas Kedokteran dan Ilmu Kesehatan Universitas Bengkulu
  • Utari Hartati Suryani Departemen Mikrobiologi Fakultas Kedokteran dan Ilmu Kesehatan Universitas Bengkulu
  • Nikki Aldi Massardi Departemen Patologi Anatomi Fakultas Kedokteran dan Ilmu Kesehatan Universitas Bengkulu
  • Debie Rizqoh Departemen Mikrobiologi Fakultas Kedokteran dan Ilmu Kesehatan Universitas Bengkulu
  • Riry Ambarsarie Departemen Mikrobiologi Fakultas Kedokteran dan Ilmu Kesehatan Universitas Bengkulu

DOI:

https://doi.org/10.31004/jkt.v5i1.24902

Keywords:

vaksin, IgG, usia, jenis kelamin, kejadian COVID-19 pascavaksinasi

Abstract

Variabilitas respons antibodi terhadap vaksinasi COVID-19 dipengaruhi oleh faktor-faktor seperti usia dan jenis kelamin. Penelitian ini bertujuan untuk mengkaji dampak usia dan jenis kelamin terhadap kadar IgG serta kejadian COVID-19 pascavaksinasi. Dengan memperoleh pemahaman mendalam tentang hubungan ini, diharapkan dapat ditingkatkan strategi vaksinasi yang lebih efektif dan efisien bagi berbagai kelompok populasi. Penelitian ini adalah penelitian cross-sectional yang dilakukan selama periode Juli hingga Desember 2021, melibatkan partisipasi 60 tenaga kesehatan dari Rumah Sakit Harapan dan Doa (RSHD) di Kota Bengkulu. Data primer dikumpulkan dari responden ini dalam rangka mengidentifikasi hubungan antara usia, jenis kelamin, dan respons antibodi terhadap vaksinasi COVID-19. Pengambilan data kadar antibodi IgG dilakukan dengan teknik CMIA, sementara data usia, jenis kelamin, dan kejadian COVID-19 pascavaksinasi melalui kuesioner. Metode statistik yang diterapkan dalam penelitian ini mencakup serangkaian uji, seperti uji Kruskal-Wallis, uji Mann-Whitney, dan uji Chi-Square. Temuan penelitian menegaskan bahwa kelompok usia 40-55 tahun dan perempuan memiliki kadar IgG yang lebih tinggi, sedangkan proporsi kejadian COVID-19 pascavaksinasi lebih tinggi pada kelompok usia 20-29 tahun dan laki-laki. Hal ini menunjukkan pengaruh signifikan dari usia dan jenis kelamin terhadap respons antibodi dan kejadian COVID-19 pascavaksinasi. Kesimpulan ini memberikan wawasan penting bagi strategi vaksinasi yang lebih efektif dan cermat bagi berbagai kelompok populasi.

References

Alishaq, M., Nafady-Hego, H., Jeremijenko, A., Al Ajmi, J. A., Elgendy, M., Vinoy, S., Fareh, S. B., Veronica Plaatjies, J., Nooh, M., Alanzi, N., Kaleeckal, A. H., Latif, A. N., Coyle, P., Elgendy, H., Abou-Samra, A.-B., & Butt, A. A. (2021). Risk factors for breakthrough SARS-CoV-2 infection in vaccinated healthcare workers. PLOS ONE, 16(10), e0258820. https://doi.org/10.1371/journal.pone.0258820

Antonelli, M., Penfold, R. S., Merino, J., Sudre, C. H., Molteni, E., Berry, S., Canas, L. S., Graham, M. S., Klaser, K., Modat, M., Murray, B., Kerfoot, E., Chen, L., Deng, J., Österdahl, M. F., Cheetham, N. J., Drew, D. A., Nguyen, L. H., Pujol, J. C., … Steves, C. J. (2022). Risk factors and disease profile of post-vaccination SARS-CoV-2 infection in UK users of the COVID Symptom Study app: a prospective, community-based, nested, case-control study. The Lancet Infectious Diseases, 22(1), 43–55. https://doi.org/10.1016/S1473-3099(21)00460-6

Arora, G., Taneja, J., Bhardwaj, P., Goyal, S., Naidu, K., Yadav, Sunita. K., Saluja, D., & Jetly, S. (2022). Adverse events and breakthrough infections associated with COVID?19 vaccination in the Indian population. Journal of Medical Virology, 94(7), 3147–3154. https://doi.org/10.1002/jmv.27708

Beyerstedt, S., Casaro, E. B., & Rangel, É. B. (2021). COVID-19: angiotensin-converting enzyme 2 (ACE2) expression and tissue susceptibility to SARS-CoV-2 infection. European Journal of Clinical Microbiology & Infectious Diseases, 40(5), 905–919. https://doi.org/10.1007/s10096-020-04138-6

Biber, J., Ranes, B., Lawrence, S., Malpani, V., Trinh, T. T., Cyders, A., English, S., Staub, C. L., McCausland, K. L., Kosinski, M., Baranwal, N., Berg, D., & Pop, R. (2022). Mental health impact on healthcare workers due to the COVID-19 pandemic: a U.S. cross-sectional survey study. Journal of Patient-Reported Outcomes, 6(1), 63. https://doi.org/10.1186/s41687-022-00467-6

Binay, U., Karakeçili, F., Binali, E., Barkay, O., Gül, Ö., & Merto?lu, C. (2021). Level of SARS-CoV-2 IgG antibodies after two doses CoronaVac vaccine: Primarily report. https://doi.org/10.21203/rs.3.rs-388073/v1

Bukowska, A., Spiller, L., Wolke, C., Lendeckel, U., Weinert, S., Hoffmann, J., Bornfleth, P., Kutschka, I., Gardemann, A., Isermann, B., & Goette, A. (2017). Protective regulation of the ACE2/ACE gene expression by estrogen in human atrial tissue from elderly men. Experimental Biology and Medicine, 242(14), 1412–1423. https://doi.org/10.1177/1535370217718808

Ceban, F., Nogo, D., Carvalho, I. P., Lee, Y., Nasri, F., Xiong, J., Lui, L. M. W., Subramaniapillai, M., Gill, H., Liu, R. N., Joseph, P., Teopiz, K. M., Cao, B., Mansur, R. B., Lin, K., Rosenblat, J. D., Ho, R. C., & McIntyre, R. S. (2021). Association Between Mood Disorders and Risk of COVID-19 Infection, Hospitalization, and Death. JAMA Psychiatry, 78(10), 1079. https://doi.org/10.1001/jamapsychiatry.2021.1818

Cucunawangsih, C., Wijaya, R. S., Lugito, N. P. H., & Suriapranata, I. (2022). Antibody response after a third dose mRNA-1273 vaccine among vaccinated healthcare workers with two doses of inactivated SARS-CoV-2 vaccine. International Journal of Infectious Diseases, 118, 116–118. https://doi.org/10.1016/j.ijid.2022.02.036

Demonbreun, A. R., Sancilio, A., Velez, M. E., Ryan, D. T., Pesce, L., Saber, R., Vaught, L. A., Reiser, N. L., Hsieh, R. R., D’Aquila, R. T., Mustanski, B., McDade, T. W., & McNally, E. M. (2021). COVID-19 mRNA Vaccination Generates Greater Immunoglobulin G Levels in Women Compared to Men. The Journal of Infectious Diseases, 224(5), 793–797. https://doi.org/10.1093/infdis/jiab314

Fink, A. L., & Klein, S. L. (2018). The evolution of greater humoral immunity in females than males: implications for vaccine efficacy. Current Opinion in Physiology, 6, 16–20. https://doi.org/10.1016/j.cophys.2018.03.010

Fisman, D. N., Lee, N., & Tuite, A. R. (2022). Timing of Breakthrough Infection Risk After Vaccination Against SARS-CoV-2 1 2. MedRxiv. https://doi.org/10.1101/2022.01.04.22268773

Flanagan, K. L., Fink, A. L., Plebanski, M., & Klein, S. L. (2017). Sex and Gender Differences in the Outcomes of Vaccination over the Life Course. Annual Review of Cell and Developmental Biology, 33(1), 577–599. https://doi.org/10.1146/annurev-cellbio-100616-060718

Gagliardi, M. C., Tieri, P., Ortona, E., & Ruggieri, A. (2020). ACE2 expression and sex disparity in COVID-19. Cell Death Discovery, 6(1), 37. https://doi.org/10.1038/s41420-020-0276-1

Gebhard, C., Regitz-Zagrosek, V., Neuhauser, H. K., Morgan, R., & Klein, S. L. (2020). Impact of sex and gender on COVID-19 outcomes in Europe. Biology of Sex Differences, 11(1), 29. https://doi.org/10.1186/s13293-020-00304-9

Giefing-Kröll, C., Berger, P., Lepperdinger, G., & Grubeck-Loebenstein, B. (2015). How sex and age affect immune responses, susceptibility to infections, and response to vaccination. Aging Cell, 14(3), 309–321. https://doi.org/10.1111/acel.12326

Goyal, M., Jain, M., Patel, N., & Sharma, A. (2022). Quantitative estimation of anti-spike SARS-CoV-2 IgG antibody response after covishield vaccination in healthcare workers. Journal of Indian Academy of Oral Medicine and Radiology, 34(2), 176. https://doi.org/10.4103/jiaomr.jiaomr_338_21

Hidayat, R., Mustika, A. P., Avisha, F., Djuliannisaa, Z., Winari, D. D., Putri, R. A., Lisman, H. M., Davin, V., Fathi, G. C., Widhani, A., Aini, M. H., Yudhistira, Y., Azizah, S., Rahmadani, M., Istanti, N. D., & Giantini, A. (2022). Evaluation of SARS-CoV-2 Antibody Response Post Third Dose COVID-19 mRNA Vaccination at Universitas Indonesia Hospital. Acta Medica Academica, 51(2), 69–78. https://doi.org/10.5644/ama2006-124.374

Jalkanen, P., Kolehmainen, P., Häkkinen, H. K., Huttunen, M., Tähtinen, P. A., Lundberg, R., Maljanen, S., Reinholm, A., Tauriainen, S., Pakkanen, S. H., Levonen, I., Nousiainen, A., Miller, T., Välimaa, H., Ivaska, L., Pasternack, A., Naves, R., Ritvos, O., Österlund, P., … Julkunen, I. (2021). COVID-19 mRNA vaccine induced antibody responses against three SARS-CoV-2 variants. Nature Communications, 12(1), 3991. https://doi.org/10.1038/s41467-021-24285-4

Kaur, U., Bala, S., Ojha, B., Pathak, B. K., Joshi, A., Yadav, A. K., Singh, A., Kansal, S., & Chakrabarti, S. S. (2022). Determinants of COVID-19 Breakthrough Infections and Severity in ChAdOx1 nCoV-19–Vaccinated Priority Groups. The American Journal of Tropical Medicine and Hygiene, 107(4), 850–855. https://doi.org/10.4269/ajtmh.22-0172

KILINÇ, Ç., YA?AR DUMAN, M., ÇALI?IR, B., ÇÖPLÜ, N., ÖZBEK, R., DEM?R, C., ERGÜL, Z., & TÜFEKC?, E. F. (2022). Evaluation of anti-spike IgG response after inactivated COVID-19 vaccine in healthcare workers. Kastamonu Medical Journal, 2(4), 123–126. https://doi.org/10.51271/kmj-0085

McCartney, P. R. (2020). Sex-Based Vaccine Response in the Context of COVID-19. Journal of Obstetric, Gynecologic & Neonatal Nursing, 49(5), 405–408. https://doi.org/10.1016/j.jogn.2020.08.001

Müller, L., Andrée, M., Moskorz, W., Drexler, I., Walotka, L., Grothmann, R., Ptok, J., Hillebrandt, J., Ritchie, A., Rabl, D., Ostermann, P. N., Robitzsch, R., Hauka, S., Walker, A., Menne, C., Grutza, R., Timm, J., Adams, O., & Schaal, H. (2021). Age-dependent Immune Response to the Biontech/Pfizer BNT162b2 Coronavirus Disease 2019 Vaccination. Clinical Infectious Diseases, 73(11), 2065–2072. https://doi.org/10.1093/cid/ciab381

Puteri, A. E., Yuliarti, E., Putri, N., Fauzia, A. A., Wicaksono, Y. S., & Tresiana, N. (2022). DI INDONESIA Analysis of the Implementation of the Covid-19 Vaccination Policy in Indonesia (Vol. 19).

Scully, E. P., Haverfield, J., Ursin, R. L., Tannenbaum, C., & Klein, S. L. (2020). Considering how biological sex impacts immune responses and COVID-19 outcomes. Nature Reviews Immunology, 20(7), 442–447. https://doi.org/10.1038/s41577-020-0348-8

Sharma, A., Oda, G., & Holodniy, M. (2021). COVID-19 Vaccine Breakthrough Infections in Veterans Health Administration. MedRxiv.

Tretyn, A., Szczepanek, J., Skorupa, M., Jarkiewicz-Tretyn, J., Sandomierz, D., Dejewska, J., Ciechanowska, K., Jarkiewicz-Tretyn, A., Koper, W., & Pa?gan, K. (2021). Differences in the Concentration of Anti-SARS-CoV-2 IgG Antibodies Post-COVID-19 Recovery or Post-Vaccination. Cells, 10(8), 1952. https://doi.org/10.3390/cells10081952

Uysal, E. B., Gümü?, S., Bektöre, B., Bozkurt, H., & Gözalan, A. (2022). Evaluation of antibody response after COVID-19 vaccination of healthcare workers. Journal of Medical Virology, 94(3), 1060–1066. https://doi.org/10.1002/jmv.27420

WHO. (n.d.). WHO Coronavirus (COVID-19) Dashboard. Retrieved May 23, 2023, from https://covid19.who.int/

Zhang, R., Li, Y., Zhang, A. L., Wang, Y., & Molina, M. J. (n.d.). Identifying airborne transmission as the dominant route for the spread of COVID-19. https://doi.org/10.1073/pnas.2009637117/-/DCSupplemental

Downloads

Published

2024-02-09

How to Cite

Nabilah, P. S. ., Suryani, U. H. ., Massardi, N. A. ., Rizqoh, D. ., & Ambarsarie, R. . (2024). PENGARUH USIA DAN JENIS KELAMIN TERHADAP KADAR IGG DAN KEJADIAN COVID-19 PASCAVAKSINASI PADA TENAGAESEHATAN KOTA BENGKULU. Jurnal Kesehatan Tambusai, 5(1), 676–685. https://doi.org/10.31004/jkt.v5i1.24902

Issue

Section

Articles