PENGARUH PARTIKEL MIKROPLASTIK DALAM DARAH TERHADAP KADAR OX-LDL RATTUS NORVEGICUS STRAIN WISTAR
DOI:
https://doi.org/10.31004/jkt.v5i1.24041Keywords:
Mikroplastik, Ox-LDL plasma, Rattus norvegicus Strain WistarAbstract
Mikroplastik merupakan partikel plastik berukuran kurang dari 5 mm. Mikroplastik yang tertelan oleh manusia selanjutnya akan memasuki traktus gastrointestinal dan mengalami penyerapan ke dalam aliran darah. Mikroplastik di dalam darah dan organ akan menyebabkan peningkatan produksi Reactive Oxygen Species (ROS) dan stres oksidatif. Salah satu akibat dari peningkatan produksi ROS pada hepar adalah terjadinya oksidasi dari Low Density Lipoprotein (LDL) menjadi Oxidized Low Density Lipoprotein (Ox-LDL). Penelitian ini merupakan penelitian eksperimental post-test only control group design. Hewan coba yang digunakan dalam penelitian ini adalah Rattus norvegicus Strain Wistar berjenis kelamin jantan sebanyak 30 ekor yang terbagi menjadi 6 kelompok (1 kelompok kontrol dan 5 kelompok eksperimental). Kelompok kontrol hanya diberikan aquabides, kelompok X1 diberikan dosis mikroplastik sebanyak 0,0375 mg/hari, kelompok X2 diberikan 0,075 mg/hari, kelompok X3 diberikan 0,15 mg/hari, kelompok X4 diberikan 0,3 mg/hari, kelompok X5 diberikan 0,6 mg/hari selama 90 hari. Setelah 90 hari, hewan coba diterminasi dan diambil sampel darahnya. Pada penelitian ini dilakukan uji komparasi pada kadar Ox-LDL plasma dengan menggunakan uji Kruskall Wallis dan didapatkan adanya perbedaan yang bermakna dari kadar Ox-LDL plasma antar kelompok dengan nilai P = 0,016. Selanjutnya dilakukan uji korelasi dengan uji Spearman dan didapatkan hubungan yang bermakna antara kadar partikel mikroplastik dalam darah dengan kadar Ox-LDL plasma dengan nilai P = 0,013.References
Bassani, L., Fernandes, S. A., Raimundo, F. V., Harter, D. L., Gonzalez, M. C., & Marroni, C. A. (2015). Lipid profile of cirrhotic patients and its association with prognostic scores: a cross-sectional study. Arquivos de Gastroenterologia, 52(3), 210–215. https://doi.org/10.1590/S0004-28032015000300011
Chang, X., Xue, Y., Li, J., Zou, L., & Tang, M. (2020). Potential health impact of environmental micro? and nanoplastics pollution. Journal of Applied Toxicology, 40(1), 4–15. https://doi.org/10.1002/jat.3915
Cox, K. D., Covernton, G. A., Davies, H. L., Dower, J. F., Juanes, F., & Dudas, S. E. (2019). Human consumption of microplastics. Environmental Science & Technology, 53(12), 7068–7074. https://doi.org/10.1021/acs.est.9b01517
Deng, Y., Zhang, Y., Lemos, B., & Ren, H. (2017). Tissue accumulation of microplastics in mice and biomarker responses suggest widespread health risks of exposure. 7(46687). https://www.nature.com/articles/srep46687
Diaz-Basantes, M. F., Conesa, J. A., & Fullana, A. (2020). Microplastics in honey, beer, milk and refreshments in Ecuador as emerging contaminant. Sustainability, 12(14), 5514. https://doi.org/10.3390/su12145514
G?secka, A., Rogula, S., Szarpak, ?., & Filipiak, K. J. (2021). LDL-Cholesterol and platelets: insights into their interactions in atherosclerosis. Life, 11(1), 39. https://doi.org/10.3390/life11010039
Ghosh, N., Das, A., Chaffee, S., Roy, S., & Sen, C. K. (2018). Reactive oxygen Species, oxidative damage and cell death. In Immunity and Inflammation in Health and Disease (pp. 45–55). Elsevier. https://doi.org/10.1016/B978-0-12-805417-8.00004-4
Goldberg, A. R., Ferguson, M., Pal, S., Cohen, R., Orlicky, D. J., McCullough, R. L., Rutkowski, J. M., Burchill, M. A., & Tamburini, B. A. J. (2022). Oxidized low density lipoprotein in the liver causes decreased permeability of liver lymphatic- but not liver sinusoidal-endothelial cells via VEGFR-3 regulation of VE-Cadherin. Frontiers in Physiology, 13. https://doi.org/10.3389/fphys.2022.1021038
Gomaa, A. F., Sharafeddin, M. A., & AbdAllah, A. M. (2020). Lipid profile in relation to severity of liver diseases. BMFJ, 37(1), 319–325.
Hoebinger, C., Rajcic, D., & Hendrikx, T. (2022). Oxidized lipids: common immunogenic drivers of non-alcoholic fatty liver disease and atherosclerosis. Frontiers in Cardiovascular Medicine, 8. https://doi.org/10.3389/fcvm.2021.824481
Jambeck, J. R., Geyer, R., Wilcox, C., Siegler, T. R., Perryman, M., Andrady, A., Narayan, R., & Law, K. L. (2015). Plastic waste inputs from land into the ocean. Science, 347(6223), 768–771. https://doi.org/10.1126/science.1260352
Juan, C. A., Pérez de la Lastra, J. M., Plou, F. J., & Pérez-Lebeña, E. (2021). The chemistry of reactive oxygen species (ROS) revisited: outlining their role in biological macromolecules (DNA, lipids and proteins) and induced pathologies. International Journal of Molecular Sciences, 22(9), 4642. https://doi.org/10.3390/ijms22094642
Lee, H., Kunz, A., Shim, W. J., & Walther, B. A. (2019). Microplastic contamination of table salts from Taiwan, including a global review. Scientific Reports, 9(1), 10145. https://doi.org/10.1038/s41598-019-46417-z
Nnoruka, U. C., Okonkwo, C. J., Ilechukwu, I., Okonkwo, C. J., & Belonwu, D. C. (2022). Impact of polystyrene microplastic exposure on lipid profile and oxidative stress status of male and female Wistar rats. Environmental Analysis Health and Toxicology, 37(3), e2022024. https://doi.org/10.5620/eaht.2022024
Oliveri Conti, G., Ferrante, M., Banni, M., Favara, C., Nicolosi, I., Cristaldi, A., Fiore, M., & Zuccarello, P. (2020). Micro- and nano-plastics in edible fruit and vegetables. The first diet risks assessment for the general population. Environmental Research, 187, 109677. https://doi.org/10.1016/j.envres.2020.109677
Poznyak, A. V., Nikiforov, N. G., Markin, A. M., Kashirskikh, D. A., Myasoedova, V. A., Gerasimova, E. V., & Orekhov, A. N. (2021). Overview of OxLDL and its impact on cardiovascular health: focus on atherosclerosis. Frontiers in Pharmacology, 11. https://doi.org/10.3389/fphar.2020.613780
Prata, J. C., da Costa, J. P., Lopes, I., Duarte, A. C., & Rocha-Santos, T. (2020). Environmental exposure to microplastics: An overview on possible human health effects. Science of The Total Environment, 702, 134455. https://doi.org/10.1016/j.scitotenv.2019.134455
Rahman, A., Sarkar, A., Yadav, O. P., Achari, G., & Slobodnik, J. (2021). Potential human health risks due to environmental exposure to nano- and microplastics and knowledge gaps: A scoping review. Science of The Total Environment, 757, 143872. https://doi.org/10.1016/j.scitotenv.2020.143872
Ribeiro, F., Okoffo, E. D., O’Brien, J. W., Fraissinet-Tachet, S., O’Brien, S., Gallen, M., Samanipour, S., Kaserzon, S., Mueller, J. F., Galloway, T., & Thomas, K. V. (2020). Quantitative analysis of selected plastics in high-commercial-value Australian seafood by pyrolysis gas chromatography mass spectrometry. Environmental Science & Technology, 54(15), 9408–9417. https://doi.org/10.1021/acs.est.0c02337
Rochman, C. M., Brookson, C., Bikker, J., Djuric, N., Earn, A., Bucci, K., Athey, S., Huntington, A., McIlwraith, H., Munno, K., De Frond, H., Kolomijeca, A., Erdle, L., Grbic, J., Bayoumi, M., Borrelle, S. B., Wu, T., Santoro, S., Werbowski, L. M., … Hung, C. (2019). Rethinking microplastics as a diverse contaminant suite. Environmental Toxicology and Chemistry, 38(4), 703–711. https://doi.org/10.1002/etc.4371
Roumeliotis, S., Roumeliotis, A., Georgianos, P. I., Stamou, A., Manolopoulos, V. G., Panagoutsos, S., & Liakopoulos, V. (2021). Oxidized LDL is associated with eGFR decline in proteinuric diabetic kidney disease: a cohort study. Oxidative Medicine and Cellular Longevity, 2021, 1–9. https://doi.org/10.1155/2021/2968869
Senathirajah, K., Attwood, S., Bhagwat, G., Carbery, M., Wilson, S., & Palanisami, T. (2021). Estimation of the mass of microplastics ingested – A pivotal first step towards human health risk assessment. Journal of Hazardous Materials, 404, 124004. https://doi.org/10.1016/j.jhazmat.2020.124004
Wright, S. L., & Kelly, F. J. (2017). Plastic and Human Health: A Micro Issue? Environmental Science & Technology, 51(12), 6634–6647. https://doi.org/10.1021/acs.est.7b00423
Zheng, T., Yuan, D., & Liu, C. (2019). Molecular toxicity of nanoplastics involving in oxidative stress and desoxyribonucleic acid damage. Journal of Molecular Recognition, 32(11). https://doi.org/10.1002/jmr.2804
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Marion Florentia, Yudhiakuari Sincihu, Niluh Suwasanti
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work’s authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal’s published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).